Skip to main content
Log in

Copolymerization of amine-containing monomers and dodecyl (meth)acrylate in toluene: controlling compositional heterogeneity

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The radical copolymerizations of N-[(3-dimethylamino)propyl]methacrylamide (DMAPMA) with n-dodecyl acrylate (DA) or n-dodecyl methacrylate (DMA) in toluene (70 °C) were shown to have a peculiar nature: the total initial concentration of monomers significantly influences the composition and compositional heterogeneity of copolymers. Such processes can not be adequately described using the comonomer reactivity ratios. No concentration effects were found in the copolymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA) and n-dodecyl methacrylate in toluene; the calculated comonomer reactivity ratios were respectively 1.57 ± 0.20 and 0.83 ± 0.02. The differences in the behavior of systems involving amine monomers are related to the ability of DMAPMA to form assemblies with different reactivity due to the hydrogen bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rudnick LR (2010) Lubricant additives: chemistry and applications, 2nd edn. Taylor & Francis, Boca Raton

    Google Scholar 

  2. Neveu CD, Sondjaja R, Stöhr T, Iroff NJ (2012) 10.26 - Lubricant and fuel additives based on Polyalkylmethacrylates. In: Krzysztof M, Martin M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 453–478. doi:10.1016/B978-0-444-53349-4.00277-6

    Chapter  Google Scholar 

  3. Pat. 6331603 US, US Cl. 526/307. Nitrogen Containing Acrylic Copolymers

  4. Pang XA, Sun HM, Shen Q (2004) Copolymerizations of 2-(dimethylamino)ethyl methacrylate with (methyl)acrylates initiated by a neutral Pd(II)-based complex. Polymer 45(12):4029–4035. doi:10.1016/j.polymer.2004.03.064

    Article  CAS  Google Scholar 

  5. Orbay M, Laible R, Dulog L (1982) Preparation of amide and amine groups containing copolymers of methyl methacrylate and their performance in solid polymer composites. Makromol Chem 183(1):47–63. doi:10.1002/macp.1982.021830104

    Article  CAS  Google Scholar 

  6. Roy SG, Bauri K, Pal S, Goswami A, Madras G, De P (2013) Synthesis, characterization and thermal degradation of dual temperature-and pH-sensitive RAFT-made copolymers of N, N-(dimethylamino)ethyl methacrylate and methyl methacrylate. Polym Int 62(3):463–473. doi:10.1002/pi.4335

    Article  CAS  Google Scholar 

  7. Camail M, Essaoudi H, Margaillan A, Vernet JL (1995) Copolymérisation radicalaire de méthacrylates de 2-aminoéthyle avec le méthacrylate de méthyle. Eur Polym J 31(11):1119–1125. doi:10.1016/0014-3057(95)00065-8

    Article  CAS  Google Scholar 

  8. Hong SH, McHugh VM (1988) Review of polymerization and properties of aminoalkyl acrylates and aminoalkyl methacrylates. Technical report. Chemical Research, Development and Engineering Center, Aberdeen Proving Ground, MD. URL: www.dtic.mil/dtic/tr/fulltext/u2/a197705.pdf?

  9. Miranda LN, Ford WT (2005) Binary copolymer reactivity of tert-butyl methacrylate, 2-(N, N-dimethylamino)ethyl methacrylate, solketal methacrylate, and 2-bromoethyl methacrylate. J Polym Sci A Polym Chem 43(19):4666–4669. doi:10.1002/pola.20939

    Article  CAS  Google Scholar 

  10. Si K, Qiu KY (1995) Radical copolymerization of N-[(3-Dimethylamino)propyl] Acrylamide (or Methacyrlamide) with methyl acrylate (or Methacrylate). J Macromol Sci A 32(sup8):1139–1148. doi:10.1080/10601329508020335

    Article  Google Scholar 

  11. López D, Plata P, Burillo G (1996) Effect of thermal treatment and radiation on (N, N-dimethylaminopropyl) acrylamide copolymers in the solid state. Radiat Phys Chem 47(2):251–256. doi:10.1016/0969-806X(94)00184-L

    Article  Google Scholar 

  12. Kazantsev OA, Sivokhin AP, Samodurova SI, Kamorin DM, Orekhov DV (2012) Effect of the synthesis conditions on the compositional heterogeneity of copolymers of higher N-alkylacrylamides and butyl (meth)acrylate. Russ J Appl Chem 85(5):804–811. doi:10.1134/S1070427212050217

    Article  CAS  Google Scholar 

  13. Kazantsev OA, Samodurova SI, Shirshin KV (2012) Effect of synthesis conditions on the compositional heterogeneity of copolymers of higher N-alkyl acrylamides and dodecyl (meth)acrylate. Plasticheskie massy (11):21–27, Russ

    Google Scholar 

  14. Kazantsev O, Shirshin K, Sivokhin A, Igolkin A, Goncharova O, Kamorin D (2012) Copolymerization of sodium 2-acrylamido-2-methylpropane sulfonate with acrylamide and acrylonitrile in water: an effect of conditions on the compositional heterogeneity. J Polym Res 19(6):1–10. doi:10.1007/s10965-012-9886-5

    Article  CAS  Google Scholar 

  15. Myagchenkov VA, Frenkel' SY (1978) Topological principles of the analysis of binary statistical copolymerisation. Russ Chem Rev 47(7):665–683. doi:10.1070/RC1978v047n07ABEH002245

    Article  Google Scholar 

  16. Kazantsev O, Samodurova S, Sivokhin A, Goncharova O, Kamorin D, Shirshin K, Orekhov D (2013) Homopolymerization of higher alkyl (meth)acrylates and N-alkyl acrylamides in toluene: an effect of monomer self-organization. J Polym Res 20(1):1–6. doi:10.1007/s10965-012-0052-x

    Article  CAS  Google Scholar 

  17. Fineman M, Ross SD (1950) Linear method for determining monomer reactivity ratios in copolymerization. J Polym Sci 5(2):259–262. doi:10.1002/pol.1950.120050210

    Article  CAS  Google Scholar 

  18. Chapiro A, Perec-Spritzer L (1975) Influence des solvants sur la copolymérisation de l’acrylamide avec l’acrylonitrile. Eur Polym J 11(1):59–69. doi:10.1016/0014-3057(75)90176-7

    Article  CAS  Google Scholar 

  19. Barton D, Ollis WD (1979) Comprehensive organic chemistry, vol 2. Pergamon Press, Oxford

    Google Scholar 

  20. Kabanov VA, Zubov VP, Semchikov YD (1987) Kompleksno-radikal’naya polimerizatsiya. Khimiya, Moscow

    Google Scholar 

  21. Seabrook SA, Tonge MP, Gilbert RG (2005) Pulsed laser polymerization study of the propagation kinetics of acrylamide in water. J Polym Sci A Polym Chem 43(7):1357–1368. doi:10.1002/pola.20605

    Article  CAS  Google Scholar 

  22. Ganachaud F, Balic R, Monteiro MJ, Gilbert RG (2000) Propagation rate coefficient of Poly(N-isopropylacrylamide) in water below its lower critical solution temperature. Macromolecules 33(23):8589–8596. doi:10.1021/ma000619l

    Article  CAS  Google Scholar 

  23. Platé NA, Ponomarenko AG (1974) Vysokomolekulyarnyye soyedineniya. Seriya A 16(12):2635–2645, Russ

    Google Scholar 

  24. Korolev G, Perepelitsina E (2001) Kinetic anomalies in the radical polymerization of alkyl (Meth)acrylates and their quantitative interpretation in terms of the associated cluster model. Polym Sci A 43(5):474–483

    Google Scholar 

  25. Myagchenkov VA, Kurenkov VF (1991) Polym Plast Technol Eng 30(2–3):109–135

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Russian Foundation for Basic Research (project 12-03-31702-mol_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey P. Sivokhin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazantsev, O.A., Kamorin, D.M., Sivokhin, A.P. et al. Copolymerization of amine-containing monomers and dodecyl (meth)acrylate in toluene: controlling compositional heterogeneity. J Polym Res 21, 353 (2014). https://doi.org/10.1007/s10965-013-0353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0353-8

Keywords

Navigation