Skip to main content
Log in

Reactivity ratios and properties of copolymers of 2-ethoxyethyl methacrylate with dodecyl methacrylate or styrene

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The copolymerization reactivity ratios for 2-ethoxyethyl methacrylate (EOEMA) with dodecyl methacrylate (DDMA) or styrene (ST) were estimated. Polymerization was performed by using tert-butyl peroxy-2-ethylhexanoate (0.01 mol dm−3) as initiator, isothermally (70 °C) to low conversions (< 10 wt.%) in a wide range of copolymer compositions (every 10 mol-% steps). For the DDMA/EOEMA copolymerization both monomers prefer to react with EOEMA: r (DDMA) = 0.82 and r (EOEMA) = 1.26 with r (DDMA) × r (EOEMA) = 1, which results in the random copolymerization. For the ST/EOEMA copolymerization reactivity ratios are r (ST) = 0.59 and r (EOEMA) = 0.49 indicating a higher reactivity with opposite monomer, while the alternation tendency is not highly pronounced. The probabilities for formations of dyad and triad monomer sequences in dependence on monomer compositions were calculated from the obtained reactivity ratios. With the share increase of ST or DDMA in copolymers surface properties changed from hydrophilic to hydrophobic. Glass transition temperature of copolymer increased with the increase of ST and decrease of DDMA. The molar mass distribution and thermal degradation of synthesized copolymers were also determined and discussed. The reactivity ratios enable optimization of copolymer properties for a given application as polyelectrolytes, drug delivery systems and multifunctional additives for improvement of rheological properties of lubricating oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Kazemi N, Lessard BH, Marić M, Duever TA, Penlidis A (2014) Ind Eng Chem Res 53:7305–7312

    Article  CAS  Google Scholar 

  2. Kazemi N, Duever TA, Penlidis A (2015) Macromol React Eng 9:228–244

    Article  CAS  Google Scholar 

  3. Kazemi N, Duever TA, Penlidis A (2011) Macromol React Eng 5:385–403

    Article  CAS  Google Scholar 

  4. Holmberg AL, Karavolias MG, Epps TH (2015) Polym Chem. doi:10.1039/C5PY00291E

    Google Scholar 

  5. Kazantsev OA, Kamorin DM, Sivokhin AP, Samodurova SI, Orekhov DV, Korotkova TV (2014) J Polym Res 21:353

    Article  Google Scholar 

  6. Wang GX, Lu M, Hou ZH, Wu H (2013) J Polym Res 20:80

    Article  Google Scholar 

  7. Zhou J, Zhang T, Liu X (2014) J Polym Res 21:532

    Article  Google Scholar 

  8. Rahdar SS, Ahmadi E, Abdollahi M, Hemmati M (2014) J Polym Res 21:582

    Article  Google Scholar 

  9. Erol I, Sarkaya S (2012) J Polym Res 19:9957

    Article  Google Scholar 

  10. Shelke NB, Kumar VS, Mahadevan KM, Sherigara BS, Aminabhavi TM (2008) J Appl Polym Sci 110:2211–2217

    Article  CAS  Google Scholar 

  11. Kumar SV, Shelke NB, Prasannakumar S, Sherigara BS, Aminabhavi TM (2011) J Polym Res 18:359–366

    Article  Google Scholar 

  12. Vacík J, Dvoránková B, Michálek J, Prádný M, Krumbholcová E, Fenclová T, Smetana K (2008) J Mater Sci Mater Med 19:883–888

    Article  Google Scholar 

  13. Compañ V, Tiemblo P, García F, García JM, Guzmán J, Riande E (2005) Biomaterials 26:3783–3791

    Article  Google Scholar 

  14. Reiter J, Michálek J, Vondrák J, Chmelíková D, Přádný M, Mička Z (2006) J Power Sources 158:509–517

    Article  CAS  Google Scholar 

  15. Cheng P, Driessen A, Tijsma E, Udipi K (2006) J Control Release 116:e92–e94

    Article  CAS  Google Scholar 

  16. Pacetti SD (Advanced Cardiovascular Systems, Inc.). U.S. Patent 7,700,659, April 20, 2010

  17. Manju M, Veeraiah MK, Prasannakumar S, Made Gowda NM, Sherigara BS (2012) American J Polym Sci 2:22–27

    Article  CAS  Google Scholar 

  18. Anton WL, Bednarek MB, Tronson S (E.I. Du Pont De Nemours And Company). European Patent 0,851,013, May 28, 2003

  19. Toyoshima Y, Hara S, Nakazyo M (Sumitomo Chemical Company, Limited). U.S. Patent 4,404,000, September 13, 1983

  20. Wingler F, Leusner B, Schwabe P, Geyer OC (Bayer Aktiengesellschaft). U.S. Patent 4,384,097, May 17, 1983

  21. Odian AG (2004) Principles of polymerization. Wiley, New York

    Book  Google Scholar 

  22. Jukić A, Rogošić M, Vidović E, Janović Z (2007) Polym Int 56:112–120

    Article  Google Scholar 

  23. Šoljić Jerbić I, Parlov Vuković J, Jukić A (2012) Ind Eng Chem Res 51:11914–11923

    Article  Google Scholar 

  24. Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook, 4th edn. John-Wiley & Sons, New York

    Google Scholar 

  25. Pang XA, Sun HM, Shen Q (2004) Polymer 45:4029–4035

    Article  CAS  Google Scholar 

  26. Stergiou G, Dousikos P, Pitsikalis M (2002) Eur Polym J 38:1963–1970

    Article  CAS  Google Scholar 

  27. Faraguna F, Vidović E, Jukić A (2015) Polym Int 64:1497–1504

    Article  CAS  Google Scholar 

  28. Rudin A, Hoegy HLW (1972) J Polym Sci A Polym Chem 10:217–235

    Article  CAS  Google Scholar 

  29. Xue Y, Bo S, Ji X (2015) J Polym Res 22:160

    Article  Google Scholar 

  30. Barrera-Rivera KA, Vera-Graziano R, López-Sánchez E, Martinez-Richa A (2015) J Polym Res 22:25

    Article  Google Scholar 

  31. Sandler SR, Karo W (1974) Polymer syntheses volume I. Academic Press Inc., London

    Google Scholar 

  32. Hempel E, Beiner M, Huth H, Donth E (2002) Thermochim Acta 391:219–225

    Article  CAS  Google Scholar 

  33. Karažija T, Vidović E, Jukić A (2013) Polym Eng Sci 53:2299–2307

    Article  Google Scholar 

  34. Fox TG, Flory PJ (1950) J Appl Phys 21:581–591

    Article  CAS  Google Scholar 

  35. Seyler RJ (1994) Assignment of the glass transition. Society for Testing and Materials International, American

    Book  Google Scholar 

  36. Kremer F, Schönhals A (2012) Broadband dielectric spectroscopy. Springer Science, Berlin

    Google Scholar 

  37. Javadi S, Sadroddini M, Razzaghi-Kashani M, Reis PNB, Balado AA (2015) J Polym Res 22:162–171

    Article  Google Scholar 

  38. Pielichowski K, Njuguna J (2005) Thermal degradation of polymeric materials. Rapra Technology Limited, Shawbury

    Google Scholar 

  39. Tai Q, Song L, Feng H, Tao Y, Yuen RKK, Hu Y (2012) J Polym Res 19:9763

    Article  Google Scholar 

  40. Sanmathi CS, Prasannakumar S, Sherigara BS (2004) J Appl Polym Sci 94:1029–1034

    Article  CAS  Google Scholar 

Download references

Acknowledgments

These materials are based on work financed by the Croatian Foundation for Science and Ministry of Science of the Republic of Croatia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ante Jukić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraguna, F., Siuc, V., Vidović, E. et al. Reactivity ratios and properties of copolymers of 2-ethoxyethyl methacrylate with dodecyl methacrylate or styrene. J Polym Res 22, 245 (2015). https://doi.org/10.1007/s10965-015-0890-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0890-4

Keywords

Navigation