Skip to main content
Log in

Semi-interpenetrated polymer networks of hyaluronic acid modified with poly(aspartic acid)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

New hydrogels based on entrapped poly(aspartic acid) (PAS) into hyaluronic acid (HA) crosslinked network were obtained to improve the sensitive characteristics, especially the pH responsiveness of the hyaluronic gels. The interactions between the macromolecular chains were sustained by rheological test, zeta potential, and hydrodynamic diameter and conductivity determinations. In situ and static evaluation of zeta potential indicated a substantially decreases of electrokinetic potential of HA/PAS mixture solutions interpreted due to the electrostatic complexation between polypeptide and polysaccharide causing a decrease in electrostatic free energy of the system. Similar, the positive deviation from the ideal additive observed on the logarithmic graphical representation of relative viscosity corresponds to the presence of the intermolecular bonds between the macromolecular chains. The spectral analysis confirmed the hydrogels formation, while the rheological measurements of HA/PAS semi-IPN have shown formation of structured network with physical links between the polymeric copartners. The SEM microphotographs presented a homogeneous porous structures with spherical formations ordered at high concentration of PAS. The superabsorbent character of PAS is evidenced by the maximum swelling degree reached at high value of pH and high PAS content. With an advantageous decreasing of residual mass and convenient straightening for thermal stability up to 60 °C compared with hyaluronic gels, the improved properties are explicated.

The semi-IPN networks based on hyaluronic acid and poly(aspartic acid) present improved swelling capacities owing to the superabsorbent character of poly(aspartic acid), as well as pH sensitivity for the new polymeric systems. The semi-IPN structures are also transformed into a viscoelastic systems through the PAS insertion into the HA network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Martínez-Sanz E, Ossipov DA, Hilborn J, Larsson S, Jonsson KB, Varghese OP (2011) Bone reservoir: injectable hyaluronic acid hydrogel for minimal invasive bone augmentation. J Control Release 152:232–240

    Article  Google Scholar 

  2. Fiorica C, Richard A, Pitarresi G, Palumbo FS, Giammona G, Deshpande P, MacNeil S (2011) Biocompatible hydrogels based on hyaluronic acid cross-linked with a polyaspartamide derivative as delivery systems for epithelial limbal cells. Int J Pharm 414:104–111

    Article  CAS  Google Scholar 

  3. Jha AK, Xu X, Duncan RL, Jia X (2011) Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials 32:2466–2478

    Article  CAS  Google Scholar 

  4. Vlierberghe SV, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408

    Article  Google Scholar 

  5. Brigham MD, Bick A, Lo E, Bendali A, Burdick JA, Khademhosseini A (2009) Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks. Tissue Eng Part A 15:1645–1653

    Article  CAS  Google Scholar 

  6. Iwasaki N, Kasahara Y, Yamane S, Igarashi T, Minami A, Nisimura SI (2011) Chitosan-based hyaluronic acid hybrid polymer fibers as a scaffold biomaterial for cartilage tissue engineering. Polymers 3:100–113

    Article  CAS  Google Scholar 

  7. Chen JP, Leu YL, Fang CL, Chen CH, Fang YJ (2010) Thermosensitive hydrogels composed of hyaluronic acid and gelatin as carriers for the intravesical administration of cisplatin. J Pharm Sci 100:655–666

    Article  Google Scholar 

  8. Lee H, Ahn CH, Park TG (2009) Poly[lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin. Macromol Biosci 9:336–342. doi:10.1002/mabi.200800229

    Article  CAS  Google Scholar 

  9. Hahn SK, Jelacic S, Maier RV, Stayton PS, Hoffman AS (2004) Anti-inflammatory drug delivery from hyaluronic acid hydrogels. J Biomater Sci Polym Ed 15:1111–1119

    Article  CAS  Google Scholar 

  10. Segura T, Anderson BC, Chung PH, Webber RE, Shull KR, Shea LD (2005) Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials 26:359–371

    Article  CAS  Google Scholar 

  11. Collins MN, Birkinshaw C (2008) Physical properties of crosslinked hyaluronic acid hydrogels. J Mater Sci Mater Med 19:3335–3343

    Article  CAS  Google Scholar 

  12. Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:H41–H56

    Article  CAS  Google Scholar 

  13. Buffa R, Běťák J, Kettou S, Hermannová M, Pospíšilová L, Velebný V (2011) A novel DTPA cross-linking of hyaluronic acid and metal complexation thereof. Carbohydr Res 346:1909–1915

    Article  CAS  Google Scholar 

  14. Yeom J, Bhang SH, Kim BS, Seo MS, Hwang EJ, Cho IH, Park JK, Hahn SK (2010) Effect of cross-linking reagents for hyaluronic acid hydrogel dermal fillers on tissue augmentation and regeneration. Bioconjug Chem 21:240–247

    Article  CAS  Google Scholar 

  15. Thombre SM, Sarwade BD (2005) Synthesis and biodegradability of polyaspartic acid: a critical review. J Macromol Sci A 42:1299–1315

    Google Scholar 

  16. Liu M, Su H, Tan T (2011) Synthesis and properties of thermo- and pH-sensitive poly(N-isopropylacrylamide)/polyaspartic acid IPN hydrogels. Carbohydr Polym 87:2425–2431

    Article  Google Scholar 

  17. Nita LE, Chiriac AP, Popescu CM, Neamtu I, Alecu L (2006) Possibilities for poly(aspartic acid) preparation as biodegradable compound. Journal of optoelectronics and advanced materials 8:663–666

    CAS  Google Scholar 

  18. Nita LE, Chiriac AP, Bercea M, Neamtu I (2011) Aspects concerning the temperature influence on the polymer/polymer interactions between poly (aspartic acid) and poly(ethylene glycol). Colloids Surf A Physicochem Eng Asp 374:121–128

    Article  CAS  Google Scholar 

  19. Nita LE, Chiriac AP, Bercea M, Neamtu I (2011) The temperature influence upon the complexation process between poly(aspartic acid) and poly(ethylene glycol). Ind Eng Chem Res 50:5369–5375

    Article  CAS  Google Scholar 

  20. Nita LE, Chiriac AP, Neamtu I, Bercea M, Pintilie MT (2009) An analysis of complexation between poly(aspartic acid) and poly(ethylene glycol). Colloids Surf A Physicochem Eng Asp 348:254–262

    Article  CAS  Google Scholar 

  21. Li F, Ying Z, Wei TT (2006) Preparation and water absorbent behavior of superabsorbent polyaspartic acid resin. J Polym Res 13(2):145–152

    Article  Google Scholar 

  22. Gyenes T, Torma V, Gyarmati B, Zrınyi M (2008) Synthesis and swelling properties of novel pH-sensitive poly(aspartic acid) gels. Acta Biomater 4:733–744

    Article  CAS  Google Scholar 

  23. Nakato T, Yoshitake M, Matsubara K, Tomida M (1998) Relationships between structure and properties of poly(aspartic acid)s. Macromolecules 31:2107–2113

    Article  CAS  Google Scholar 

  24. Kim J-H, Son CM, Jeon YS, Choe W-S (2011) Synthesis and characterization of poly(aspartic acid) derivatives conjugated with various amino acids. J Polym Res 18(5):881–890

    Article  CAS  Google Scholar 

  25. Liu C, Chen Y, Chen J (2010) Synthesis and characteristics of pH-sensitive semi-interpenetrating polymer network hydrogels based on konjac glucomannan and poly (aspartic acid) for in vitro drug delivery. Carbohydr Polym 79:500–506

    Article  CAS  Google Scholar 

  26. Neamtu I, Chiriac AP, Nita LE, Bercea M (2007) Poly(aspartic acid) in interpolymer complex with biomedical applications. J Optoelectron Adv Mater 9:3459–3462

    CAS  Google Scholar 

  27. Nita LE, Chiriac AP, Neamtu I, Bercea M (2010) Study of a binary interpenetrated polymeric complex by correlation of rheological parameters with zeta potential and conductivity. Colloids Surf B Biointerfaces 76:70–75

    Article  CAS  Google Scholar 

  28. Yang J, Fang L, Tan T (2006) Synthesis and characterization of superabsorbent hydrogels composites based on polysuccinimide. J Appl Polym Sci 102:550–557

    Article  CAS  Google Scholar 

  29. Zhao Y, Su H, Fang L, Tan T (2005) Superabsorbent hydrogels from poly(aspartic acid) with salt-, temperature- and pH-responsiveness properties. Polymer 46:5368–5376

    Article  CAS  Google Scholar 

  30. Liu CC, Chang KY, Wang YJ (2010) A novel biodegradable amphiphilic diblock copolymers based on poly(lactic acid) and hyaluronic acid as biomaterials for drug delivery. J Polym Res 17(4):459–469

    Article  CAS  Google Scholar 

  31. Pescosolido L, Schuurman W, Malda J, Matricardi P, Alhaique F, Coviello T, Rene van Weeren P, Dhert WJA, Hennink WE, Vermonden T (2011) Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules 12:1831–1838

    Article  CAS  Google Scholar 

  32. Sharad SD, Pradeep RV (2012) Design of a gastroretentive mucoadhesive dosage form of furosemide for controlled release. Acta Pharm Sin B 2(5):509–517

    Google Scholar 

  33. Khare AR, Peppas NA (1995) Swelling/deswelling of anionic copolymer gels. Biomaterials 16:559–567

    Article  CAS  Google Scholar 

  34. Haxaire K, Maréchal Y, Milas M, Rinaudo M (2003) Hydration of polysaccharide hyaluronan observed by IR spectrometry. I. Preliminary experiments and band assignments. Biopolymers 72(1):10–20

    Article  CAS  Google Scholar 

  35. Barrow RF (Ed), Long DA (Ed), Sheridan J (Ed) (1976) Molecular spectroscopy, Specialist periodical reports, Chapter: Biological applications of Raman spectroscopy, The Chemical Society (Great Britain) ISSN: 0305–9782, 4:127–130

  36. Ellzy MW, Jensen JO, Kay JG (2003) Vibrational frequencies and structural determinations of di-vinyl sulfone. Spectrochim Acta A Mol Biomol Spectrosc 59(4):867–881

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0199, contract number 300/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurica P. Chiriac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nistor, M.T., Chiriac, A.P., Nita, L.E. et al. Semi-interpenetrated polymer networks of hyaluronic acid modified with poly(aspartic acid). J Polym Res 20, 86 (2013). https://doi.org/10.1007/s10965-013-0086-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0086-8

Keywords

Navigation