Skip to main content
Log in

Morphology and thermal properties relationship in poly(p-dioxanone)/layered double hydroxides nanocomposites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Nanocomposites of poly(p-dioxanone) (PPDO) with unmodified and organically modified layered double hydroxide (LDH) have been prepared by melt extrusion method. Dodecyl sulfate was used as organic modifier. The morphology of nanocomposites was analyzed by X-ray diffraction and transmission electron microscopy and their thermal properties by differential scanning calorimetry and thermogravimetric analysis. It has been found that the organic modifier decisively influences the nanocomposite morphology, resulting in a higher level of exfoliation. In addition, the glass transition temperature of nanocomposites was slightly higher than in case of unfilled PPDO. Moreover, the crystallization was delayed by LDH incorporation. The above behavior was ascribed to interactions between carbonyl groups of polymer matrix and hydroxyl groups of LDH, as supported by Fourier transformed infrared analysis. Interestingly, two different crystallization processes have been observed in the nanocomposite of PPDO and organically modified LDH. Unmodified and organo-modified LDH, practically did not alter the final melting point of PPDO. However, the thermal decomposition behavior was clearly influenced by the morphology exhibited by nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Schadler LS (2004) Polymer-based and polymer-filled nanocomposites. In: Ajayan M, Schadler LS, Braun PV (eds) Nanocomposite science and technology. Wiley VCH, New York, p 77

    Google Scholar 

  2. Alexandre M, Dubois P (2000) Mat Sci Eng 28:1

    Article  Google Scholar 

  3. Ke YC, Strove P (2005) Polymer-layered silicate and silica nanocomposites. Elsevier, Amsterdam

    Google Scholar 

  4. Paul DR, Robeson LM (2008) Polymer 49:3187

    Article  CAS  Google Scholar 

  5. Bhattacharya SN, Gupta RK, Kamal MR (2008) Polymeric nanocomposites. Hanser Verlag, Munich

    Google Scholar 

  6. Vaia RA, Giannelis EP (1997) Macromolecules 30:7990

    Article  CAS  Google Scholar 

  7. Balazs AC, Singh C, Zhulina E (1998) Macromolecules 31:8370

    Article  CAS  Google Scholar 

  8. Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539

    Article  CAS  Google Scholar 

  9. Schaefer DW, Justice RS (2007) Macromolecules 40:8501

    Article  CAS  Google Scholar 

  10. Illaik A, Taviot-Guého C, Lavis J, Commereuc S, Verney V, Leroux F (2008) Chem Mater 20:4854

    Article  CAS  Google Scholar 

  11. Chen K, Wilkie A, Vyazovkin S (2007) J Phys Chem B 111:12685

    Article  CAS  Google Scholar 

  12. Strawhecker KE, Manias E (2000) Chem Mater 12:2943

    Article  CAS  Google Scholar 

  13. Leroux F, Besse JP (2001) Chem Mater 13:3507

    Article  CAS  Google Scholar 

  14. Del Hoyo C (2007) Appl Clay Sci 36:103

    Article  Google Scholar 

  15. Evans DG, Slade RCT (2006) Structural aspects of layered double hydroxides. In: Mingos DMP, Duan X, Evans DG (eds) Layered double hydroxides: Structure and bonding, vol. 119. Springer-Verlag, Berlin, p 15

    Google Scholar 

  16. Chen W, Qu B (2003) Chem Mater 15:3208

    Article  CAS  Google Scholar 

  17. Lonkar SP, Morlat-therias S, Caperaa N, Leroux F, Gardette JL, Singh RP (2009) Polymer 50:1505

    Article  CAS  Google Scholar 

  18. Pan P, Zhu B, Dong T, Inoue YJ (2008) Polym Sci Part B Polym Phys 46:2222

    Article  CAS  Google Scholar 

  19. Lee WD, Im SS, Lim HM, Kim KJ (2006) Polymer 47:1364

    Article  CAS  Google Scholar 

  20. Peng H, Tjiu WC, Shen L, Huang S, He C, Liu T (2009) Compos Sci Technol 69:991

    Article  CAS  Google Scholar 

  21. Miri V, Elkoun S, Peurton F, Vanmansart C, Lefebvre J-M, Krawczak P et al (2008) Macromolecules 41:9234

    Article  CAS  Google Scholar 

  22. Sabino MA, González S, Márquez L, Feijoo JL (2000) Polym Degrad Stab 69:209

    Article  CAS  Google Scholar 

  23. Yang K, Wang X, Wang YJ (2002) Macromol Sci Part C Polym Rev C43:373

    Article  Google Scholar 

  24. Bordes P, Pollet E, Averous L (2009) Prog Polym Sci 34:125

    Article  CAS  Google Scholar 

  25. Dimotakis ED, Pinnavaia TJ (1990) Inorg Chem 29:2393

    Article  CAS  Google Scholar 

  26. Iyi N, Matsumoto T, Kaneko Y, Kitamura K (2004) Chem Mater 16:2926

    Article  CAS  Google Scholar 

  27. Oriakhi CO, Farr IV, Lerner MM (1996) J Mater Chem 6:103

    Article  CAS  Google Scholar 

  28. Costa FR, Leuteritz A, Wagenknecht U, Jehnichen D, Häusßler L, Heinrich G (2008) Appl Clay Sci 38:153

    Article  CAS  Google Scholar 

  29. Jaubertie C, Holgado MJ, San Román MS, Rives V (2006) Chem Mater 18:3114

    Article  CAS  Google Scholar 

  30. Lyatskaya Y, Balazs AC (1998) Macromolecules 31:6676

    Article  CAS  Google Scholar 

  31. Lee SS, Hur MH, Yang H, Lim S, Kim J (2006) J Appl Polym Sci 101:2749

    Article  CAS  Google Scholar 

  32. Dai XH, Xu J, Guo XL, Lu YL, Shen DY, Zhao N et al (2004) Macromolecules 37:5615

    Article  CAS  Google Scholar 

  33. Lee KM, Han CD (2003) Polymer 44:4573

    Article  CAS  Google Scholar 

  34. Vaia RA, Sauer BB, Tse OK, Giannellis EP (1997) J Polym Sci Part B Polym Phys 35:59

    Article  CAS  Google Scholar 

  35. Tran TA, Said S, Grohens Y (2005) Macromolecules 38:3867

    Article  CAS  Google Scholar 

  36. Lu H, Nutt S (2003) Macromolecules 36:4010

    Article  CAS  Google Scholar 

  37. Zhang X, Loo LS (2009) Macromolecules 42:5196

    Article  CAS  Google Scholar 

  38. Ray VV, Banthia AK, Schick C (2007) Polymer 48:2404

    Article  CAS  Google Scholar 

  39. Ishikiriyama K, Pyda M, Zhang G, Forschner T, Grebowicz J, Wunderlich BJ (1998) Macromol Sci Phys B37:27

    Article  CAS  Google Scholar 

  40. Pezzin APT, Alberda van Ekenstein GOR, Duek EAR (2001) Polymer 42:8303

    Article  CAS  Google Scholar 

  41. Zubitur M, Gómez MA, Cortázar M (2009) Polym Deg Stab 94:804

    Article  CAS  Google Scholar 

  42. Kanezaki E (1998) Mat Res Bull 33:773

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support is acknowledged from the Spanish Ministerio de Educación y Ciencia (MEC) (project MAT 2005-03358) and also from the Basque Government (Saiotek S-PE09UN05). The authors thank Dr. T. Ezkerra for his help with the X-ray experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Zubitur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubitur, M., Mugica, A., Areizaga, J. et al. Morphology and thermal properties relationship in poly(p-dioxanone)/layered double hydroxides nanocomposites. Colloid Polym Sci 288, 809–818 (2010). https://doi.org/10.1007/s00396-010-2207-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2207-9

Keywords

Navigation