Skip to main content
Log in

Electrospun poly(L-lactic acid) fiber mats containing a crude Garcinia cowa extract for wound dressing applications

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly(L-lactic acid) (PLLA) fiber mats containing a crude extract of Garcinia cowa Roxb. (GC) were prepared by electrospinning. The extract was introduced at a level of either at 30 or 50 % with respect to the weight of PLLA. The fibers of both the neat and the GC-loaded PLLA fibers were smooth, with average diameters of 0.80–1.13 μm. The characteristics of the release of GC from the GC-loaded PLLA fiber mats were assessed by a total immersion method in acetate or phosphate buffer solution that contained 0.5 % v/v Tween 80 and 3 % v/v methanol (hereafter, A/T/M or P/T/M medium) at either 32 or 37 °C, respectively. The maximum cumulative amount of GC released from the GC-loaded PLLA fiber mats in the P/T/M medium was greater than that released in the A/T/M medium. The antioxidant activity of the GC-loaded PLLA fiber mats, assessed using a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, remained even after they had been exposed to a high electrical potential. The antimicrobial activity of the GC-loaded mats was greatest against Straphylococcus aureus ATCC 25923 and Straphylococcus aureus DMST 20654. Lastly, almost all of the GC-loaded PLLA fiber mats, except for those that contained 50 % GC, were found to be nontoxic to normal human dermal fibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reneker DH, Yarin AL (2008) Polymer 49:2387–2425

    Article  CAS  Google Scholar 

  2. Suwantong O, Ruktanonchai U, Supaphol P (2008) Polymer 49:4239–4247

    Article  CAS  Google Scholar 

  3. Sikareepaisan P, Suksamrarn A, Supaphol P (2008) Nanotechnology 19:015102

    Article  Google Scholar 

  4. Torres Vargas EA, do Vale Baracho NC, de Brito J, de Queiroz AAA (2010) Acta Biomater 6:1069–1078

    Article  Google Scholar 

  5. Rujitanaroj P, Pimpha N, Supaphol P (2008) Polymer 49:4723–4732

    Article  CAS  Google Scholar 

  6. del Valle LJ, Roa M, Díaz A, Casas MT, Puiggalí J, Rodríguez-Galán A (2012) J Polym Res 19:9792

    Article  Google Scholar 

  7. Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Tamura H, Jayakumar R (2009) Carbohyd Polym 77:863–869

    Article  CAS  Google Scholar 

  8. Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF (2010) Mater Sci Eng C 30:1204–1210

    Article  CAS  Google Scholar 

  9. Wu X, Branford-White CJ, Zhu L, Chatterton NP, Yu D (2010) J Mater Sci Mater Med 21:2403–2411

    Article  CAS  Google Scholar 

  10. Suwantong O, Opanasopit P, Ruktanonchai U, Supaphol P (2007) Polymer 48:7546–7557

    Article  CAS  Google Scholar 

  11. Im JS, Yun J, Lim Y, Kim H, Lee Y (2010) Acta Biomater 6:102–109

    Article  CAS  Google Scholar 

  12. Park J-Y, Lee I-H (2011) J Polym Res 18:1287–1291

    Article  CAS  Google Scholar 

  13. Pornsopone V, Supaphol P, Rangkupan R, Tantayanon S (2007) J Polym Res 14:53–59

    Article  CAS  Google Scholar 

  14. Baji A, Mai Y, Wong S, Abtahi M, Chen P (2010) Compos Sci Technol 70:703–718

    Article  CAS  Google Scholar 

  15. Lyons J, Li C, Ko F (2004) Polymer 45:7597–7603

    Article  CAS  Google Scholar 

  16. Renouf-Glauser AC, Rose J, Farrar DF, Cameron RE (2005) Biomaterials 26:5771–5782

    Article  CAS  Google Scholar 

  17. Yang F, Murugan R, Wang S, Ramakrishna S (2005) Biomaterials 26:2603–2610

    Article  CAS  Google Scholar 

  18. He L, Liao S, Quan D, Ma K, Chan C, Ramakrishna S, Lu J (2010) Acta Biomater 6:2960–2969

    Article  CAS  Google Scholar 

  19. Maretschek S, Greiner A, Kissel T (2008) J Control Release 127:180–187

    Article  CAS  Google Scholar 

  20. Kontogiannopoulos KN, Assimopoulou AN, Tsivintzelis I, Panayiotou C, Papageorgiou VP (2011) Int J Pharm 409:216–228

    Article  CAS  Google Scholar 

  21. Kurpinski KT, Stephenson JT, Janairo RRR, Lee H, Li S (2010) Biomaterials 31:3536–3542

    Article  CAS  Google Scholar 

  22. Zeng J, Yang L, Liang Q, Zhang X, Guan H, Xu X, Chen X, Jing X (2005) J Control Release 105:43–51

    Article  CAS  Google Scholar 

  23. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Polymer 43:4403–4412

    Article  CAS  Google Scholar 

  24. Kenawy E, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE (2002) J Control Release 81:57–64

    Article  CAS  Google Scholar 

  25. Chuysinuan P, Chimnoi N, Techasakul S, Supaphol P (2009) Macromol Chem Physic 210:814–822

    Article  CAS  Google Scholar 

  26. Na Pattalung P, Thongtheeraparp W, Wiriyachitra P, Taylor WC (1994) Planta Med 60:365–368

    Article  CAS  Google Scholar 

  27. Poomipamorn S, Kumkong A (1997) Edible multipurpose tree species. FuangFa, Bangkok, p 486 (in Thai)

  28. Ilham M, Yaday M, Norhanom AW (1995) Nat Prod Sci 1:31–42

    CAS  Google Scholar 

  29. Murakami A, Jiwajiinda S, Koshimizu K, Ohigashi H (1995) Cancer Lett 95:137–146

    Article  Google Scholar 

  30. Negi PS, Jayaprakasha GK, Jena BS (2008) LWT Food Sci Technol 41:1857–1861

    Google Scholar 

  31. Panthong K, Hutadilok-Towatana N, Panthong A (2009) Can J Chem 87:1636–1640

    Article  CAS  Google Scholar 

  32. Xu G, Kan WLT, Zhou Y, Song J, Han Q, Qiao C, Cho C, Rudd JA, Lin G, Xu H (2010) J Nat Prod 73:104–108

    Article  CAS  Google Scholar 

  33. Panthong K, Pongcharoen W, Phongpaichit S, Taylor WC (2006) Phytochemistry 67:999–1004

    Article  CAS  Google Scholar 

  34. Likhitwitayawuid K, Phadungcharoen T, Krungkrai J (1998) Planta Med 64:70–72

    Article  CAS  Google Scholar 

  35. Mahabusarakam W, Chairerk P, Taylor WC (2005) Phytochemistry 66:1148–1153

    Article  CAS  Google Scholar 

  36. Robert RE, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Free Rad Bio Med 26:1231–1237

    Google Scholar 

  37. Philip LR, Peppas NA (1987) J Control Release 5:23–36

    Article  Google Scholar 

  38. Peppas NA, Khare AR (1993) Adv Drug Delivery Rev 11:1–35

    Article  CAS  Google Scholar 

  39. Verreck G, Chun I, Rosenblatt J, Peeters J, Dijck AV, Mensch J, Noppe M, Brewster ME (2003) J Control Release 92:349–360

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Thailand Research Fund (grant number: MRG5380120). We are grateful to Mae Fah Luang University for its partial financial support and allowing us to use its laboratory facilities. The authors acknowledge that they were partially financially supported by the “Integrated Innovation Academic Center: IIAC,” Chulalongkorn University Centenary Academic Development Project, Chulalongkorn University, which was used to procure the electrospinning apparatus used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orawan Suwantong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suwantong, O., Pankongadisak, P., Deachathai, S. et al. Electrospun poly(L-lactic acid) fiber mats containing a crude Garcinia cowa extract for wound dressing applications. J Polym Res 19, 9896 (2012). https://doi.org/10.1007/s10965-012-9896-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9896-3

Keywords

Navigation