Skip to main content
Log in

Electrospun nanofibers of a degradable poly(ester amide). Scaffolds loaded with antimicrobial agents

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Electrospinning conditions were evaluated to prepare micro/nanofibers of a biodegradable poly(ester amide) constituted by L-alanine, 1,12-dodecanediol and sebacic acid. 1,1,1,3,3,3-Hexafluroroisopropanol appeared as the most appropriate solvent to obtain fibers in a wide range of electrospinning conditions that allowed tuning the final diameter size. Fiber diameter increased with the flow, distance between the needle tip and the collector and decreasing voltage, which made it possible to obtain homogeneous fibers in the 1700–320 nm range. Fibers were loaded with antimicrobial agents like silver and chlorohexidine, and the influence of agent concentration in the electrospinning solutions on the fiber diameter size was determined. The polymer was able to crystallize during the electrospinning process, giving rise to a structure slightly different from that obtained by solution crystallization and related to that attained after crystallization from the melt state. Addition of antimicrobial agents had little effect on the degree of crystallinity, although it decreased slightly when chlorhexidine was employed. Scaffolds prepared from the silver and chlorhexidine loaded samples supported cell adhesion and proliferation. Furthermore, a clear and well differentiated antimicrobial effect against both Gram-positive (e.g. M. luteus) and Gram-negative (e.g. E. coli) bacteria was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barbato F, la Rotonda MI, Maglio G, Palumbo R, Quaglia F (2001) Biodegradable microspheres of novel segmented poly(ether-ester-amide)s based on poly(ε-caprolactone) for the delivery of bioactive compounds. Biomaterials 22:1371–1378

    Article  CAS  Google Scholar 

  2. Ostacolo L, Russo P, de Rosa G, la Rotonda MI, Maglio G, Nese G, Spagnuolo G, Rengo S, Oliva A, Quaglia F (2008) Poly(ether ester amide) microspheres for protein delivery: influence of copolymer composition on technological and biological properties. Macromol Biosci 8:682–689

    Article  CAS  Google Scholar 

  3. Guo K, Chu CC (2009) Biodegradable and injectable paclitaxel-loaded poly(ester amide)s microspheres: fabrication and characterization. J Biomed Mater Res B Appl Biomater 89:491–500

    Google Scholar 

  4. Vera M, Puiggali J, Coudane J (2006) Microspheres from new biodegradable poly(ester amide)s with different ratios of L- and D-alanine for controlled drug delivery. J Microencapsul 23:686–697

    Article  CAS  Google Scholar 

  5. Qian ZY, Li S, He Y, Zihang HL, Liu XB (2004) Preparation of biodegradable polyesteramide microspheres. Colloid Polym Sci 282:1083–1088

    Article  CAS  Google Scholar 

  6. Ouchi T, Hamada A, Ohya Y (1999) Biodegradable microspheres having reactive groups prepared from L-lactic acid-depsipeptide copolymers. Macromol Chem Phys 200:436–441

    Article  CAS  Google Scholar 

  7. Ouchi T, Ohya Y (2004) Design of lactide copolymers as biomaterials. J Polym Sci Part A: Polym Chem 42:453–462

    Article  CAS  Google Scholar 

  8. Ouchi T, Toyohara M, Arimura H, Ohya Y (2002) Preparation of poly(L-lactide)-based microspheres having a cationic or anionic surface using biodegradable surfactants. Biomacromolecules 3:885–888

    Article  CAS  Google Scholar 

  9. Lee SH, Szinai I, Carpenter K, Katsarava R, Jokhadze G, Chu C-C, Huang Y, Verbeken E, Bramwell O, De Scheerder I, Hong MK (2002) In-vivo biocompatibility evaluation of stents coated with a new biodegradable elastomeric and functional polymer. Coron Artery Dis 13:237–241

    Article  CAS  Google Scholar 

  10. US 7,749,263 B2 (2008) Poly(ester amide) filler blends for modulation of coating properties. Invs: Desnoyer JR, Pacetti DP, Hossainy SFA, Kleiner L, Tang Y, Zhang G.

  11. Huang Y, Wang L, Li S, Liu X, Lee K, Verbeken E, van de Werf F, de Scheerder I (2006) Stent-based tempamine delivery on neointimal formation in a porcine coronary model. Acute Card Care 8:210–216

    Article  Google Scholar 

  12. US 1,952,830 (2008) Biologically absorbable coatings for implantable devices based on poly(ester amides) and methods for fabricating the same. Invs: Pacetti S, Desnoyer JR

  13. 20100047319 Patent application (2010) Biodegradable poly(ester-amide) and poly(amide) coatings for implantable medical devices with enhanced bioabsorption times. Invs: Ngo MH, Hossainy SFA, Lim F, Trollsas MO

  14. John G, Morita M (1999) Synthesis and characterization of photo-cross-linked networks based on L-lactide/serine copolymers. Macromolecules 32:1853–1858

    Article  CAS  Google Scholar 

  15. Pang X, Chu CC (2010) Synthesis, characterization and biodegradation of poly(ester amide)s based hydrogels. Polymer 51:4200–4210

    Article  CAS  Google Scholar 

  16. Feng Y, Behl M, Kelch S, Lendlein A (2009) Biodegradable multiblock copolymers based on oligodepsipeptides having shape-memory properties. Macromol Biosci 9:45–54

    Article  CAS  Google Scholar 

  17. Horwitz JA, Shum KM, Bodle JC, Deng M, Chu CC, Reinhart-King CA (2010) Biological performance of biodegradable amino acid-based poly(ester amide)s: endothelial cell adhesion and inflammation in vitro. J Biomed Mater Res Part A 95:371–380

    Article  Google Scholar 

  18. Karimi P, Rizkalla AS, Mequanint K (2010) Versatile biodegradable poly(ester amide)s derived from α-amino acids for vascular tissue engineering. Materials 3:2346–2368

    Article  CAS  Google Scholar 

  19. Bettinger CJ, Bruggeman JP, Borenstein JT, Langer RS (2008) Amino alcohol-based degradable poly(ester amide) elastomers. Biomaterials 29:2315–2325

    Article  CAS  Google Scholar 

  20. US 2009/0253809 A1 (2009) Bioabsorbable elastomeric polymer networks, cross-linkers and methods of use. Invs: Gomurashvili ZD, Katsarava R, Chumburdze G, Mumladze N, Tugushi D

  21. Dai Yamanouchi D, Wu J, Lazar AN, Kent KC, Chu CC, Liu B (2008) Biodegradable arginine-based poly(ester-amide)s as non-viral gene delivery reagents. Biomaterials 29:3269–3277

    Article  Google Scholar 

  22. Paredes N, Rodríguez-Galán A, Puiggalí J (1998) Synthesis and characterization of a family of biodegradable poly(ester amide)s derived from glycine. J Polym Sci Part A: Polym Chem 36:1271–1282

    Article  CAS  Google Scholar 

  23. Paredes N, Casas MT, Puiggalí J (2001) Poly(ester amide)s derived from glycine, even-numbered diols, and dicarboxylic acids: Considerations on the packing. J Polym Sci Part B: Polym Phys 39:1036–1045

    Article  CAS  Google Scholar 

  24. Paredes N, Rodríguez-Galán A, Puiggalí J, Peraire C (1998) Studies on the biodegradation and biocompatibility of a new poly(ester amide) derived from L-alanine. J Appl Polym Sci 69:1537–1549

    Article  CAS  Google Scholar 

  25. Rodríguez-Galán A, Pelfort M, Aceituno JE, Puiggalí J (1999) Comparative studies on the degradability of poly(ester amide)s derived from L- and L, D-alanine. J Appl Polym Sci 74:2312–2320

    Article  Google Scholar 

  26. Rodriguez-Galan A, Franco L, Puiggalí J (2011) Degradable poly(ester amide)s for biomedical applications. Polymers 3:65–99

    Article  CAS  Google Scholar 

  27. del Valle LJ, Roca D, Franco L, Puiggalí J, Rodríguez-Galán A (2011) Preparation and release study of ibuprofen loaded porous matrices of a biodegradable poly(ester amide) derived from L-alanine units. J Appl Polym Sci 122:1953–1967. doi:10.1002/app.34017

    Google Scholar 

  28. Boundriot U, Dersch R, Greiner A, Wendorff JH (2006) Electrospinning approaches toward scaffold engineering—a brief overview. Artif Organs 30:785–792

    Article  Google Scholar 

  29. Katti DS, Robinson KW, Ko FK, Laurencin CT (2004) Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J Biomed Mater Res B 70:286–296

    Article  Google Scholar 

  30. WO2007090102-A2 (2007) University California, invs: Li S, Patel S, Hashi C, Huang NF, Kurpinski K, Huang N. Chem Abstr 147:243474

  31. Pornsopone V, Supaphol P, Rangkupan R, Tantayanon S (2007) Electrospun methacrylate-based copolymer/indomethacin fibers and their release characteristics of indomethacin. J Polym Res 14:53–59

    Article  CAS  Google Scholar 

  32. del Valle LJ, Camps R, Díaz A, Franco A, Rodríguez-Galán A, Puiggalí J (2011) Electrospinning of polylactide and polycaprolactone mixtures for preparation of materials with tunable drug release properties. J Polym Res. doi:10.1007/s10965-011-9597-3

  33. Wei K, Xia J-H, Kim B-S, Kim I-S (2010) Multiwalled carbon nanotubes incorporated Bombyx mori silk nanofibers by electrospinning. J Polym Res 18:579–585

    Article  Google Scholar 

  34. Luo CJ, Stride E, Stoyanov S, Pelan E, Edirisinghe M (2011) Electrospinning short polymer micro-fibres with average aspect ratios in the range of 10–200. J Polym Res. doi:10.1007/s10965-011-9667-6

  35. Li L, Chu CC (2009) Nitroxyl radical incorporated electrospun biodegradable poly(ester amide) nanofiber membranes. J Biomat Sci Polym Ed 20:341–361

    Article  CAS  Google Scholar 

  36. Kuyyakanond T, Quesnel LB (1992) The mechanism of action of chlorhexidine. FEMS Microbiol Lett 79:211–215

    CAS  Google Scholar 

  37. Lansdown AB (2006) Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol 33:17–34

    Article  CAS  Google Scholar 

  38. Fridrikh SV, Yu JH, Brenner MP, Rutledge GC (2003) Controlling the fiber diameter during electrospinning. Phys Rev Lett 90:144502–144504

    Article  Google Scholar 

  39. McKee MG, Elkins CL, Long TE (2004) Influence of self-complementary hydrogen bonding on solution rheology/electrospinning relationships. Polymer 45:8705–8715

    Article  CAS  Google Scholar 

  40. Luo CJ, Nangrejo M, Edirisinghe M (2010) A novel method of selecting solvents for polymer electrospinning. Polymer 51:1654–1662

    Article  CAS  Google Scholar 

  41. van Krevelen DW (1990) Properties of polymers. Elsevier, Amsterdam

    Google Scholar 

  42. van Krevelen DW, Hoftyzer PJ (1976) Newtonian shear viscosity of polymeric melts. Angew Macromol Chem 52:101–109

    Article  Google Scholar 

  43. Zong XH, Kim K, Fang DF, Ran SF, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioadsorbable nanofiber membrane. Polymer 43:4403–4412

    Article  CAS  Google Scholar 

  44. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211

    Article  CAS  Google Scholar 

  45. Ramakrishma S, Fujihara K, Teo W (2005) An introduction to electrospinning and nanofibers. World Scientific Publishing Co Pte Ltd. ISBN 10.9812564543

  46. Venkatpurwar V, Pokharkar V (2011) Green synthesis of silver nanoparticles using marine polysaccharide: Study of in-vitro antibacterial activity. Materials Lett 65:999–1002

    Article  CAS  Google Scholar 

  47. Bryaskova R, Pencheva D, Kale GM, Umesh L, Kantardjiev T (2010) Synthesis, characterization and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films. J Colloid Interface Sci 349:77–85. doi:10.1016/j.jcis.2010.04.091

    Article  CAS  Google Scholar 

  48. Yu D-G (2007) Formation of colloidal silver nanoparticles stabilized by Na+-poly(γ-glutamic acid)-silver nitrate complex via chemical reduction process. Colloids Surf B Biointerfaces 59:171–178. doi:10.1016/j.colsurfb.2007.05.007

    Article  CAS  Google Scholar 

  49. Hurrell S, Cameron RE (2002) The effect of initial polymer morphology on the degradation and drug release from polyglycolide. Biomaterials 23:2401–2409

    Article  CAS  Google Scholar 

  50. Miyajima M, Koshika A, Okada J, Ikeda M, Nishimura KJ (1997) Effect of polymer crystallinity on papaverine release from poly(L-lactic acid) matrix. J Control Release 49:207–215

    Article  CAS  Google Scholar 

  51. Xu X, Yang Q, Wang Y, Yu H, Chen X, Jing X (2006) Biodegradable electrospun poly(L-lactide) fibers containing antibacterial silver nanoparticles. Eur Polym J 42:2081–2087. doi:10.1016/j.eurpolymmj.2006.03.032

    Article  CAS  Google Scholar 

  52. Ramesh C, Keller A, Eltink SJEA (1994) Studies on the crystallization and melting of nylon-6,6: 1. The dependence of the Brill transition on the crystallization temperature. Polymer 35:2483–2487

    Article  CAS  Google Scholar 

  53. Yoshioka Y, Tashiro K, Ramesh C (2003) Structural change in the Brill transition of Nylon m/n (2) conformational disordering as viewed from the temperature-dependent infrared spectral measurements. Polymer 44:6407–6417

    Article  CAS  Google Scholar 

  54. Cui X, Yan D (2005) Preparation, characterization and crystalline transitions of odd–even polyamides 11,12 and 11,10. Eur Polym J 41:863–870

    Article  CAS  Google Scholar 

  55. Lessa FCR, Aranha AMF, Nogueira I, Giro EMA, Hebling J, Costa CA (2010) Toxicity of chlorhexidine on odontoblast-like cells. J Appl Oral Sci 18:50–58

    Article  CAS  Google Scholar 

  56. Hidalgo E, Dominguez C (2001) Mechanisms underlying chlorhexidine-induced cytotoxicity. Toxicol In Vitro 15:271–276

    Article  CAS  Google Scholar 

  57. Mariotti AJ, Rumpf DA (1999) Chlorhexidine-induced changes to human gingival fibroblast collagen and non-collagen protein production. J Periodontol 70:1443–1448

    Article  CAS  Google Scholar 

  58. Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromolecules 25:1632–1637

    CAS  Google Scholar 

  59. Park SW, Bae HS, Xing ZC, Kwon OH, Huh MW, Kang IK (2009) Preparation and properties of silver-containing nylon 6 nanofibers formed by electrospinning. J Appl Polym Sci 112:2320–2326

    Article  CAS  Google Scholar 

  60. Davies A (1973) The mode of action of chlorhexidine. J Periodontol Res Suppl 12:68–75

    Article  CAS  Google Scholar 

  61. Emilson CG (1977) Susceptibility of various microorganisms to chlorhexidine. Scand J Dent Res 85:255–265

    CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by grants from MCYT/FEDER and AGAUR (MAT2009-11503, 2009SGR-1208). We are grateful to Drs. François Fauth and Ana Labrador of the CRG BM16 beamline staff of CELLS (Consortium for the Exploitation of the Synchrotron Light Laboratory). We are also grateful to Dr. Trifon Trifonov for FIB micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis J. del Valle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Valle, L.J., Roa, M., Díaz, A. et al. Electrospun nanofibers of a degradable poly(ester amide). Scaffolds loaded with antimicrobial agents. J Polym Res 19, 9792 (2012). https://doi.org/10.1007/s10965-011-9792-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-011-9792-2

Keywords

Navigation