Skip to main content
Log in

Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Isothermal and nonisothermal crystallization of isotactic polypropylene (iPP)/graphene oxide nanosheet (GONS) nanocomposites were investigated by differential scanning calorimetry, polarizing optical microscopy and synchrotron wide-angle X-ray diffraction. Nonisothermal crystallization measurement revealed that GONSs significantly elevated crystallization peak temperature of iPP. Nucleating activity of the nanocomposites containing 0.05 wt% and 0.1 wt% GONSs was 0.61 and 0.56, respectively, indicating strong nucleation ability of GONSs. Induction period and half crystallization time of nanocomposites was greatly reduced during isothermal crystallization process. Moreover, only 0.05 wt% and 0.1 wt% caused less temperature dependence of crystallization kinetics in a wide temperature range of 132–140 °C. A very low GONS loading provided sufficient surface area for crystallite nucleation. Polarized optical microscopy showed that nucleation density of nanocomposites was much larger than that of neat iPP, accelerating overall spherulite growth rate. Crystal structure of iPP was not affected by GONSs, confirming the α-nucleating ability of GONSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438:197

    Article  CAS  Google Scholar 

  2. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Angew Chem-Int Edit 48:7752

    Article  CAS  Google Scholar 

  3. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22:3906

    Article  CAS  Google Scholar 

  4. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK (2008) Phys Rev Lett 100:016602

    Article  CAS  Google Scholar 

  5. Lee C, Wei XD, Kysar JW, Hone J (2008) Science 321:385

    Article  CAS  Google Scholar 

  6. Du X, Skachko I, Barker A, Andrei EY (2008) Nat Nanotechnol 3:491

    Article  CAS  Google Scholar 

  7. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  CAS  Google Scholar 

  8. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’homme RK, Brinson LC (2008) Nat Nanotechnol 3:327

    Article  CAS  Google Scholar 

  9. Kim H, Abdala AA, Macosko CW (2010) Macromolecules 43:6515

    Article  CAS  Google Scholar 

  10. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Polymer 52:5

    Article  CAS  Google Scholar 

  11. Kuilla T, Bhadra S, Yao DH, Kim NH, Bose S, Lee JH (2010) Prog Polym Sci 35:1350

    Article  CAS  Google Scholar 

  12. Gao JF, Yan DX, Huang HD, Zeng XB, Zhang WQ, Li ZM (2011) J Polym Res 18:2239

    Article  CAS  Google Scholar 

  13. Shi SL, Zhang LZ, Li JS (2009) J Polym Res 16:395

    Article  CAS  Google Scholar 

  14. Liang JJ, Huang Y, Zhang L, Wang Y, Ma YF, Guo TY, Chen YS (2009) Adv Funct Mater 19:2297

    Article  CAS  Google Scholar 

  15. Pang H, Chen T, Zhang GM, Zeng BQ, Li ZM (2010) Mater Lett 64:2226

    Article  CAS  Google Scholar 

  16. Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Polymer 51:3321

    Article  CAS  Google Scholar 

  17. Yang XL, Zhan YQ, Yang J, Zhong JC, Zhao R, Liu XB (2012) J Polym Res 19:9806

    Article  Google Scholar 

  18. Cai DY, Song M (2009) Nanotechnology 20:315708

    Article  Google Scholar 

  19. Das B, Prasad KE, Ramamurty U, Rao CNR (2009) Nanotechnology 20:125705

    Article  Google Scholar 

  20. Xu JZ, Liang YY, Zhong GJ, Li HL, Chen C, Li LB, Li ZM (2012) J Phys Chem Lett 3:530

    Article  CAS  Google Scholar 

  21. Xu JZ, Chen C, Wang Y, Tang H, Li ZM, Hsiao BS (2011) Macromolecules 44:2808

    Article  CAS  Google Scholar 

  22. Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Hsiao BS (2010) Macromolecules 43:5000

    Article  CAS  Google Scholar 

  23. Yang JS, Yang CL, Wang MS, Chen BD, Ma XG (2011) Phys Chem Chem Phys 13:15476

    Article  CAS  Google Scholar 

  24. Cheng S, Chen X, Hsuan YG, Li CY (2011) Macromolecules 45:993

    Article  Google Scholar 

  25. Pang H, Zhong GJ, Wang Y, Xu JZ, Li ZM, Lei J, Chen C, Ji X (2012) J Polym Res 19:9837

    Article  Google Scholar 

  26. Avila-Orta CA, Medellin-Rodriguez FJ, Davila-Rodriguez MV, Aguirre-Figueroa YA, Yoon K, Hsiao BS (2007) J Appl Polym Sci 106:2640

    Article  CAS  Google Scholar 

  27. Xu HS, Dai XJ, Lamb PR, Li ZM (2009) J Polym Sci Pt B-Polym Phys 47:2341

    Article  CAS  Google Scholar 

  28. Hsu SF, Wu TM, Liao CS (2007) J Polym Sci Pt B-Polym Phys 45:995

    Article  CAS  Google Scholar 

  29. Dobreva A, Gutzow I (1993) J Non-Cryst Solids 162:1

    Article  CAS  Google Scholar 

  30. Assouline E, Lustiger A, Barber AH, Cooper CA, Klein E, Wachtel E, Wagner HD (2003) J Polym Sci Pt B-Polym Phys 41:520

    Article  CAS  Google Scholar 

  31. Grady BP, Pompeo F, Shambaugh RL, Resasco DE (2002) J Phys Chem B 106:5852

    Article  CAS  Google Scholar 

  32. Krikorian V, Pochan DJ (2005) Macromolecules 38:6520

    Article  CAS  Google Scholar 

  33. Masirek R, Szkudlarek E, Piorkowska E, Slouf M, Kratochvil J, Baldrian J (2010) J Polym Sci Pt B-Polym Phys 48:469

    Article  CAS  Google Scholar 

  34. D’Haese M, Van Puyvelde P, Langouche F (2010) Macromolecules 43:2933

    Article  Google Scholar 

  35. Marand H, Xu JN, Srinivas S (1998) Macromolecules 31:8219

    Article  CAS  Google Scholar 

  36. Chen YH, Zhong GJ, Wang Y, Li ZM, Li LB (2009) Macromolecules 42:4343

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Outstanding Youth Foundation of China (Grant No. 50925311), the National Natural Science of China (Grant No. 51033004), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51121001), and the Open Foundation of Top Priority Subjects, Zhejiang Province (Grant No. 20110903).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Lei or Chen Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, JZ., Liang, YY., Huang, HD. et al. Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites. J Polym Res 19, 9975 (2012). https://doi.org/10.1007/s10965-012-9975-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9975-5

Keywords

Navigation