Skip to main content
Log in

Transport properties of natural gas through polyethylene nanocomposites at high temperature and pressure

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

An Erratum to this article was published on 15 May 2012

Abstract

High density polyethylene (HDPE)/clay nanocomposites containing nanoclay concentrations of 1, 2.5, and 5 wt% were prepared by a melt blending process. The effects of various types of nanoclays and their concentrations on permeability, solubility, and diffusivity of natural gas in the nanocomposites were investigated. The results were compared with HDPE typically used in the production of liners for the petroleum industry. Four different nanoclays—Cloisite 10A, 15A, 30B and Nanomer 1.44P—were studied in the presence of CH4 and a CO2/CH4 mixture in the temperature range 30–70 °C and pressure range 50–100 bar. The permeability and diffusivity of the gases were considerably reduced by the incorporation of nanoclay into the polymer matrix. Addition of 5 wt% loading of Nanomer 1.44P reduced the permeability by 46% and the diffusion coefficient by 43%. Increasing the pressure from 50 to 100 bar at constant temperature had little influence on the permeability, whereas increasing the temperature from 30 to 70 °C significantly increased the permeability of the gas. Additionally, the effect of crystallinity on permeability, solubility, and diffusivity was investigated. Thus, the permeability of the CO2/CH4 mixture in Nanomer 1.44P nanocomposite was reduced by 47% and diffusion coefficient by 35% at 5 wt% loading, 50 °C, and 100 bar, compared with pure HDPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Paul DR, Robeson LM (2008) Polymer 49:3187–3204

    Article  CAS  Google Scholar 

  2. Xiao J, Hu Y, Kong Q, Song L, Wang Z, Chen Z, Fan W (2005) Polym Bull 54:271–278

    Article  CAS  Google Scholar 

  3. Ahmadi SJ, Hunang YD, Li W (2004) J Mater Sci 39:1919–1925

    Article  CAS  Google Scholar 

  4. Nwabunma D (2008) In: Nwabunma D, Kyu T (eds) Polyolefin composite. Wiley-Interscience, New Jersey

    Google Scholar 

  5. Hu Y, Lu H, Song L (2008) In: Nwabunma D, Kyu T (eds) Polyolefin composite. Wiley-Interscience, New Jersey

    Google Scholar 

  6. Deka BK, Maji TK, Mandal M (2011) Study on properties of nanocomposites based on HDPE, LDPE, PP, PVC and clay. Polym Bull. doi:10.1007/s00289-011-0529-5

  7. Scharlach K, Walter K (2007) J Zhejiang Univ Sci A 8:987–990

    Article  CAS  Google Scholar 

  8. Lomakin SM, Dubnikova IL, Shchegolikhin AN, Zaikov GE, Kozlowski R, Kim GM, Michler GH (2008) J Therm Anal Calorim 94:719–726

    Article  CAS  Google Scholar 

  9. Adewole JK, Al-Mubaiyedh UA, Ul-Hamid A, Al-Juhani AA, Hussein IA (2011) Can J Chem Eng 9999:1–13

    Google Scholar 

  10. Deepthi MV, Sharma M, Sailaja R, Anantha P, Sampathkumaran P, Seetharamu S (2010) Mater Des 31:2051–2060

    Article  CAS  Google Scholar 

  11. Gopakumar T, Lee J, Kontopoulou M, Parent J (2002) Polym 43:5483–5491

    Article  CAS  Google Scholar 

  12. Zhai H, Xu W, Guo H, Zhou Z, Shen S, Song Q (2004) Eur Polym J 40:2539–2545

    Article  CAS  Google Scholar 

  13. Zhang J, Wilkie CA (2003) Polym Degrad Stab 80:163–169

    Article  CAS  Google Scholar 

  14. Zhao C, Qin H, Gong F, Feng M, Zhang S, Yang M (2005) Polym Degrad Stab 87:183–189

    Article  CAS  Google Scholar 

  15. Chuang TH, Guo W, Cheng KC, Chen SW, Wang HT, Yen YY (2004) J Polym Res 11:169–174

    Article  CAS  Google Scholar 

  16. Flaconnèche B, Martin J, Klopffer MH (2001) Oil Gas Sci Technol 56:261–278

    Article  Google Scholar 

  17. Picard E, Vermogen A, Gerard J, Espuche E (2008) J Polym Sci B Polym Phys 46:2593–2604

    Article  CAS  Google Scholar 

  18. Jacquelot E, Espuche E, Gerard JF, Duchet J, Mazabraud P (2006) J Polym Sci B Polym Phys 44:431–440

    Article  CAS  Google Scholar 

  19. Naito Y, Mizoguchi K, Terada K, Kamiya Y (1991) J Polym Sci B Polym Phys 29:457–462

    Article  CAS  Google Scholar 

  20. Hotta S, Paul DR (2004) Polymer 45:7639–7654

    Article  CAS  Google Scholar 

  21. Raharjo RD, Freeman BD, Paul DR, Sarti GC, Sanders ES (2007) J Membr Sci 306:75–92

    Article  CAS  Google Scholar 

  22. Klopffer M, Flaconnèche B (2001) Oil Gas Sci Technol Rev IFP 56:223–244

    Article  CAS  Google Scholar 

  23. Lin H, Freeman B (2004) J Membr Sci 239:105–117

    Article  CAS  Google Scholar 

  24. Safari M, Ghanizadeh A, Montazer-Rahmati MM (2009) Int J Greenh Gas Control 3:3–10

    Article  CAS  Google Scholar 

  25. Stern SA, Krishnakumar B, Nadakatti SM (1996) In: Mark JE (ed) Physical properties of polymers handbook. AIP, Woodbury

    Google Scholar 

  26. Alamo RG, Mandelkern L (2009) In: Mark JE (ed) Polymer data handbook. Oxford University Press, Oxford

    Google Scholar 

  27. Flaconnèche B, Martin J, Klopffer M (2001) Oil Gas Sci Technol Rev IFP 56:245–259

    Article  Google Scholar 

  28. Koros WJ, Madden CW (2003) Transport Properties. In: Mark HF (ed) Encyclopedia of polymer science and technology. Wiley-Interscience, New Jersey

    Google Scholar 

  29. Ghadimi A, Sadrzadeh M, Shahidi K, Mohammadi T (2009) J Membr Sci 344:225–236

    Article  CAS  Google Scholar 

  30. Merkel CT, He Z, Pinnau I, Freeman BD, Meakin P, Hill JA (2003) Macromol 36:6844–6855

    Article  CAS  Google Scholar 

  31. Matteucci S, Raharjo RD, Kusuma VA, Swinnea S, Freeman BD (2008) Macromol 41:2144–2156

    Article  CAS  Google Scholar 

  32. Lee H, Jung D, Hong C, Rhee KY, Advani SG (2005) Compos Sci Technol 65:1996–2002

    Article  CAS  Google Scholar 

  33. Jordan SM, Koros WJ (1990) J Polym Sci B Polym Phys 28:795–809

    Article  CAS  Google Scholar 

  34. Zeng Q, Yu A (2010) In: Vittal M (ed) Optimization of polymer nanocomposite properties. Wiley-VCH, Weinheim

    Google Scholar 

  35. Hussein IA (1999) Molecular order, miscibility and rheology of molten polyethylenes. PhD Thesis, University of Alberta

  36. Welty JR, Wicks CE, Wilson RE, Rorrer G (2008) Fundamentals of momentum, heat and mass transfer, 5th edn. Wiley, New Jersey

    Google Scholar 

  37. Mogri Z, Paul DR (2004) Polym 42:7781–7789

    Article  Google Scholar 

  38. Dhingra SS, Marand E (1998) J Membr Sci 141:45–63

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibnelwaleed A. Hussein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adewole, J.K., Jensen, L., Al-Mubaiyedh, U.A. et al. Transport properties of natural gas through polyethylene nanocomposites at high temperature and pressure. J Polym Res 19, 9814 (2012). https://doi.org/10.1007/s10965-011-9814-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-011-9814-0

Keywords

Navigation