Skip to main content
Log in

Transport behavior of aromatic hydrocarbons through high density polyethylene/ ethylene propylene diene terpolymer blends

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Membrane based separation technology is currently regarded as a new frontier of chemical engineering and widely used for the purification, concentration and fractionation of fluid mixtures. Polymer blend membranes are promising materials that can overcome the difficulties associated with homopolymer systems and hence the selection of polymer blend membrane as a novel material for various applications is worth probing. Transport properties of aromatic hydrocarbons through a new class of membranes from blends of high density polyethylene (HDPE) and ethylene propylene diene terpolymer rubber (EPDM) have been investigated at different temperatures to understand the effect of physical and chemical nature of the polymer blend on the transport phenomena. The effects of blend ratio, temperature and penetrant size on the sorption properties were studied. The equilibrium solvent uptake decreases with an increase in concentration of HDPE, in the blends. Relationship between transport behavior and the morphology of the system was examined. The mechanism of transport has been analyzed and found that the mode of transport is close to Fickian. The sorption data have been used to estimate the transport coefficients and various kinetic parameters of sorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Minnathu MA, Unnikrishnan G, Purushothaman E (2011) J Membr Sci 379:363

    Google Scholar 

  2. John B, Thomas SP, Varughese KT, Oommen Z, Thomas S (2011) J Polym Res 18:1101

    Article  CAS  Google Scholar 

  3. Bhattacharya M, Biswas S, Bhowmick AK (2011) Polymer 52:1562

    Article  CAS  Google Scholar 

  4. Chen GQ, Scholes CA, Qiao GG, Kentish SE (2011) J Membr Sci 379:479

    Article  CAS  Google Scholar 

  5. Kim W, Park HB (2011) J Membr Sci 372:116

    Article  CAS  Google Scholar 

  6. Manoj KC, Prajitha K, Rajesh C, Unnikrishnan G (2010) J Polym Res 17:1

    Article  CAS  Google Scholar 

  7. Lue SJ, Ou JS, Chen SL, Hung WS, Hu CC, Jean YC, Lai JY (2010) J Membr Sci 356:78

    Article  CAS  Google Scholar 

  8. Lue SJ, Tsai CL, Lee D-T, Mahesh KPO, Hua MY, Hu C-C, Jean YC, Lee K-R, Lai JY (2010) J Membr Sci 349:321

    Article  CAS  Google Scholar 

  9. Katoch S, Sharma V, Kundu PP (2010) Chem. Engg Sci 65:4378–4387

    Article  CAS  Google Scholar 

  10. Buquet CL, Doudou BB, Chappey C, Dargent E, Marais S (2009) J Phys Chem B 113:3445

    Article  Google Scholar 

  11. Friess K, Jansen JC, Vopicka O, Randova A, Hynek V, Sipek M, Bartovska L, Izak P, Dingemans M, Dewulf J, Langenhove HV, Drioli E (2009) J Membr Sci 338:161

    Article  CAS  Google Scholar 

  12. Obasi HC, Ogbobe OO, Igwe IO (2009) J Polym Sci 1:1

    Google Scholar 

  13. Ciu L, Yeh J-T, Wang K, Tsai FC, Fu Q (2009) J Membr Sci 327:226–233

    Article  Google Scholar 

  14. Muralidharan MN, Anilkumar S, Thomas S (2008) J Membr Sci 315:147–154

    Article  CAS  Google Scholar 

  15. Kumari P, Radhakrishnan CK, George S, Unnikrishnan G (2008) J Polym Res 15:97

    Article  CAS  Google Scholar 

  16. Anilkumar PV, Varughese KT, Thomas S (2002) Polym Polym Comp 10:7

    Google Scholar 

  17. Aminabhavi TM, Phayde HTS (1995) Polymer 36:1023

    Article  CAS  Google Scholar 

  18. Legge NR, Holden G, Schroeder HE (1987) in ‘Thermoplastic Elastomers, A Comprehensive Review’, (Eds.), Hanser Publishers, New York, P 138

  19. Lin W, Cossar M, Dang V, Teh J (2007) Polym Testing 26:814

    Article  CAS  Google Scholar 

  20. Saville B, Watson AA (1967) Rubb Chem Technol 40:100

    Article  CAS  Google Scholar 

  21. Mathew NM, Bhowmick AK, De SK (1982) Rubb Chem Technol 55:51

    Article  CAS  Google Scholar 

  22. Mathai AE, Singh RP, Thomas S (2003) PolymEng Sci 43:704

    Article  CAS  Google Scholar 

  23. Hopfenberg HB, Paul DR (1976) In: Paul DR (ed) Polymer Blends, vol. I. Academic Press, New York

    Google Scholar 

  24. Shivaputhrappa B, Harogappad, Aminabhavi TM (1991) Macromolecules 24:2598

    Article  Google Scholar 

  25. George SC, Thomas S, Ninan KN (1996) Polymer 37(26)

  26. Robeson LM, Noshay A, Matzner M, Merriam CN (1973) Die Angew Makromol Chem 29(30):47

    Article  Google Scholar 

  27. Morrel SH , in Rubber Technology and Manufacture (1982), Blow CM, Hepburn C (Eds.), 2nd edition, Butterworths, London, Ch. 5.

  28. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  29. Liao DC, Chern YC, HanL JL, Hseih KH (1997) J Polym Sci B: Polym Phys 35:1747

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabu Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anil Kumar, P.V., Anilkumar, S., Varughese, K.T. et al. Transport behavior of aromatic hydrocarbons through high density polyethylene/ ethylene propylene diene terpolymer blends. J Polym Res 19, 9794 (2012). https://doi.org/10.1007/s10965-011-9794-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-011-9794-0

Keywords

Navigation