Skip to main content
Log in

Study on the structure and properties of nanocomposites based on high-density polyethylene/starch blends

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The effects of nanoclay on the structure and final properties of high density polyethylene (HDPE)/thermoplastic starch (TPS) blends were investigated. Neat blends as well as nanoclay containing samples were prepared by melt blending in an internal mixer. Also, a poly (ethylene-g-maleic anhydride) (PE-g-MA) copolymer was used as compatibilizer in some of the formulations. Nanocomposites with intercalated structures were obtained in the samples lacking the compatibilizer, based on the rheological, X-ray diffraction (XRD) and transmission electron microscopy (TEM) results. However, some of the silicate layers were nearly exfoliated in the presence of the compatibilizer. The nanoclay was located preferably in the HDPE matrix as well as at the interface of the HDPE matrix and TPS dispersed phase. The ability of the nanoclays in decreasing the average size of TPS phase in the HDPE matrix was confirmed by scanning electron microscopy (SEM) observations. Furthermore, thermo-gravimetric analysis (TGA) showed that the nanoclays could enhance the thermal stability of the samples. It seems that nanoclays performed as an insulator and mass transport barrier to the small molecules generated during decomposition, and assisted in the formation of char after thermal decomposition of the polymer matrix. All the samples containing the compatibilizer possessed higher tensile strength and elongation at break, but lower modulus, compared to the corresponding un-compatibilized samples. Finally, incorporation of the nanoclays was found to be in favor of developing nanocomposites with higher biodegradability as evidenced through a biodegradation test by fungi as well as water uptake experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Poole A, Church JS, Huson MG (2009) Biomacromolecules 10:1–8

    Article  CAS  Google Scholar 

  2. Church JS, Poole AJ, Woodhead AL (2010) Vib Spectrosc 53:107–111

    Article  CAS  Google Scholar 

  3. Chivrac F, Pollet E, Schmutz M, Averous L (2008) Biomacromolecules 9:896–900

    Article  CAS  Google Scholar 

  4. Huang M, Yu J, Ma X, Jin P (2005) Polymer 46:3157–3162

    Article  CAS  Google Scholar 

  5. Wu K, Hu Y, Song L, Lu H, Wang Z (2009) Ind Eng Chem Res 48:3150–3157

    Article  CAS  Google Scholar 

  6. Zhang Q, Yu Z, Xie X, Naito K, Kagawa Y (2007) Polymer 48:7193–7200

    Article  CAS  Google Scholar 

  7. Wang H, Sun X, Seib P (2001) J Appl Polym Sci 82:1761–1767

    Article  CAS  Google Scholar 

  8. Zhang JF, Sun XZ (2004) Biomacromolecules 5:1446–1451

    Article  CAS  Google Scholar 

  9. Yu L, Dean K, Li L (2006) Prog Polym Sci 3:576–602

    Article  Google Scholar 

  10. Landreau E, Tighzert L, Bliard C, Berzin F, Lacoste C (2009) Eur Polym J 45:2609–2618

    Article  CAS  Google Scholar 

  11. Walker AM, Tao Y, Torkelson JM (2007) Polymer 48:1066–1074

    Article  CAS  Google Scholar 

  12. Varaporn T, Wannarat P (2009) J Appl Polym Sci 114:742–753

    Article  Google Scholar 

  13. Prachayawarakorn J, Sangnitidej P, Boonpasith P (2010) Carbohydr Polym 81:425–433

    Article  CAS  Google Scholar 

  14. Griffin GJL (1980) Pure Appl Chem 52:399–407

    Article  CAS  Google Scholar 

  15. Huang CY, Roan ML, Kuo MC, Lu WL (2005) Polymer Degrad Stabil 90:95–105

    Article  CAS  Google Scholar 

  16. Rivero IE, Balsamo V, Muller AJ (2009) Carbohydr Polym 75:343–350

    Article  CAS  Google Scholar 

  17. Wittwer F, Tomka I (1987) US Patent 4,673,438

  18. St-Pierre N, Favis BD, Ramsay BA, Ramsay JA, Verhoogt H (1997) Polymer 38:647–655

    Article  CAS  Google Scholar 

  19. Matzinos P, Tserki V, Gianikouris C, Pavlidou E, Panayiotou C (2002) Eur Polym J 38:1713–1720

    Article  CAS  Google Scholar 

  20. Taguet A, Huneault M, Favis BD (2009) Polymer 50:5733–5743

    Article  CAS  Google Scholar 

  21. Fenouillot F, Cassagnau P, Majeste JC (2009) Polymer 50:1–18

    Article  Google Scholar 

  22. Gharachorlou A, Goharpey F (2008) Macromolecules 41:3276–3283

    Article  CAS  Google Scholar 

  23. Liao H, Wu C (2005) J Appl Polym Sci 97:397–404

    Article  CAS  Google Scholar 

  24. Lai SM, Ti KT (2007) Int Polym Proc 12:502–511

    Article  Google Scholar 

  25. Chiu F, Lai S, Ti K (2009) Polym Test 28:243–250

    Article  CAS  Google Scholar 

  26. Kim HJ, Lee JJ, Kim JC, Kim YC (2010) J Ind Eng Chem 16:406–410

    Article  CAS  Google Scholar 

  27. Sharif A, Mohammadi N, Ghaffarian SR (2009) J Appl Polym Sci 112:3249–3256

    Article  CAS  Google Scholar 

  28. Wunderlich B, Czornyj G (1977) Macromolecules 10:906–913

    Article  CAS  Google Scholar 

  29. Mathew AP (2002) Dufresne. Biomacromolecules 3:1101–1108

    Article  CAS  Google Scholar 

  30. Picard E, Gerard JF, Espuche E (2008) J Membr Sci 313:284–295

    Article  CAS  Google Scholar 

  31. Spencer MW, Cui L, Yoo Y, Paul DR (2010) Polymer 51:1056–1070

    Article  CAS  Google Scholar 

  32. Jafari SH, Potschke P, Stephan M, Warth H, Alberts H (2002) Polymer 43:6985–6992

    Article  CAS  Google Scholar 

  33. Mullins L (1969) Rubber Chem Technol 42:339–362

    Article  CAS  Google Scholar 

  34. Durmus A, Kasgoz A, Macosko CW (2007) Polymer 48:4492–4502

    Article  CAS  Google Scholar 

  35. Ren J, Silva AS, Krishnamoorti R (2000) Macromolecules 33:3739–3746

    Article  CAS  Google Scholar 

  36. Hyun YH, Lim ST, Choi HJ, Jhon MS (2001) Macromolecules 34:8084–8093

    Article  CAS  Google Scholar 

  37. Cassagnau PH (2008) Polymer 49:2183–2196

    Article  CAS  Google Scholar 

  38. Bayram G, Yilmazer U, Xanthos M, Patel SH (2002) J Appl Polym Sci 85:2615–2623

    Article  CAS  Google Scholar 

  39. Gelfer MY, Song HH, Liu L, Hsiao BS, Chu B, Rafailovich M, Si M, Zaitsev V (2003) J Polymer Sci B Polymer Phys 4:44–54

    Article  Google Scholar 

  40. Si M, Araki T, Ade H, Kilcoyne ALD, Fisher R, Sokolov JC, Rafailovich MH (2006) Macromolecules 39:4793–4801

    Article  CAS  Google Scholar 

  41. Wu S (1987) Polym Eng Sci 27:335–343

    Article  CAS  Google Scholar 

  42. Moghbelli E, Sue HJ, Jain S (2010) Polymer 51:4231–4237

    Article  CAS  Google Scholar 

  43. Liu X, Yu L, Liu H, Chen L, Li L (2008) Polymer Degrad Stabil 93:260–262

    Article  CAS  Google Scholar 

  44. Zhu J, Morgan AB, Lamelas FJ, Wilkie CA (2001) Chem Mater 13:3774–3780

    Article  CAS  Google Scholar 

  45. Turhan Y, Dogan M, Alkan M (2010) Ind Eng Chem Res 49:1503–1513

    Article  CAS  Google Scholar 

  46. Kiliaris P, Papaspyrides CD (2010) Prog Polym Sci 35:902–958

    Article  CAS  Google Scholar 

  47. Peprnicek T, Duchet J, Kovarova L, Malac J, Gerard JF, Simonik J (2006) Polymer Degrad Stabil 91:1855–1860

    Article  CAS  Google Scholar 

  48. Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Mater Sci Eng A393:1–11

    CAS  Google Scholar 

  49. Zhao C, Qin H, Gong F, Feng M, Zhang S, Yang M (2005) Polymer Degrad Stabil 87:183–189

    Article  CAS  Google Scholar 

  50. Shang X, Fu X, Chen X, Yang L (2009) J Appl Polym Sci 114:3574–3584

    Article  CAS  Google Scholar 

  51. Park H, Lee S, Chowdhury S, Kang T, Kim H, Park S, Ha C (2002) J Appl Polym Sci 86:2907–2915

    Article  CAS  Google Scholar 

  52. Pan H, Zhaobin Q (2010) Macromolecules 43:1499–1506

    Article  CAS  Google Scholar 

  53. Maiti P, Batt CA, Giannelis EP (2007) Biomacromolecules 8:3393–3400

    Article  CAS  Google Scholar 

  54. Singh NK, Purkayastha BD, Roy J, Banik R, Yashpal M, Singh G, Malik S, Maiti P (2010) ASC Appl Mater Interface 2:69–81

    Article  CAS  Google Scholar 

  55. Ning N, Luo F, Wang K, Zhang Q, Chen F, Du R, An C, Pan B, Fu Q (2008) J Phys Chem B 112:14140–14148

    Article  CAS  Google Scholar 

  56. Javan Nikkhah S, Ramazani A, Baniasadi H, Tavakolzadeh F (2009) Mater Des 30:2309–2315

    Article  Google Scholar 

  57. Russo M, Strounina E, Waret M, Nicholson T, Truss R, Halley P (2007) Biomacromolecules 8:296–301

    Article  CAS  Google Scholar 

  58. Pierce B, Brown A, Sheares V (2008) Macromolecules 4:3866–3873

    Article  Google Scholar 

  59. Abacha N, Kubouchi M, Sakai T, Tsuda K (2009) J Appl Polym Sci 112:1021–1029

    Article  CAS  Google Scholar 

  60. Chung Y, Ansari S, Estevez L, Hayrapetyan S, Giannelis EP, Lai H (2010) Carbohydr Polym 79:391–396

    Article  CAS  Google Scholar 

  61. Durmus A, Woo M, Kasgoz A, Macosko CW, Tsapatsis M (2007) Eur Polym J 43:3737–3749

    Article  CAS  Google Scholar 

  62. Picard E, Gauthier H, Gerard JF, Espuche E (2007) J Colloid Interface Sci 307:363–376

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to place on record their appreciation for the support rendered by the Research and Technology Directorate / National Iranian Oil Company, for the research leading to the present article. Special thanks are also given to Mrs. Chitsazian from Industrial and Environmental Protection Division at RIPI, for her help with the biodegradation experiments. Finally, it is our pleasure to thank the anonymous reviewer for his/her useful suggestions and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Sharif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharif, A., Aalaie, J., Shariatpanahi, H. et al. Study on the structure and properties of nanocomposites based on high-density polyethylene/starch blends. J Polym Res 18, 1955–1969 (2011). https://doi.org/10.1007/s10965-011-9603-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-011-9603-9

Keywords

Navigation