Skip to main content
Log in

Iron(III) complex of an amino-functionalized poly(acrylamide)-grafted lignocellulosic residue as a potential adsorbent for the removal of chromium(VI) from water and industry effluents

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A new adsorbent (AM-Fe-PGCP), iron(III) complex of an amino-functionalized poly(acrylamide)-grafted coconut coir pith(CP) was prepared through graft copolymerization of acrylamide onto CP (a lignocellulosic residue) in the presence of N, N′-methylenebisacrylamide as cross-linker using and potassium persulphate as an initiator, followed by loading with Fe(III) in the presence of HCl and was tested for its ability to recover chromium(VI) from water and industry effluents. The adsorbent was characterized using FTIR, SEM, XRD, TG/DTG, Surface area analyzer and potentiometric titrations. The potential of the AM-Fe-PGCP to adsorb Cr(VI) from aqueous solutions was investigated under different optimized conditions of pH, concentration of Cr(VI), contact time, and temperature. The effective pH for the removal of Cr(VI) was 4.0. Kinetic data followed a pseudo-second-order model. The equilibrium data were correlated with the Langmuir isotherm model. The equilibrium Cr(VI) sorption capacity was estimated to be 90.09 mg g-1. Quantitative removal of 27.7 mg L-1 Cr(VI) from 1.0 L of electroplating industry wastewater was achieved by 0.5 g adsorbent. The reusability of the adsorbent was demonstrated over four cycles using 0.1 M NaOH solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chiarle S, Ratto M, Rovatti M (2000) Water Res 34:2971

    Article  CAS  Google Scholar 

  2. Environmental Protection Agency (EPA). http://www.epa.gov

  3. Gardea-Torresday JR, de la Rosa G, Peralta-Videa JR (2004) Pure Appl Chem 76:801

    Article  Google Scholar 

  4. Anirudhan TS, Unnithan MR (2007) Chemosphere 66:60

    Article  CAS  Google Scholar 

  5. Babel S, Kurniawan TA (2003) J Hazard Mater B97:219

    Article  Google Scholar 

  6. Saliba R, Gauthier H, Guathier R, Petit-Ramel M (2000) J Appl Polym Sci 75:1624

    Article  CAS  Google Scholar 

  7. Mohan D, Pittman CU (2007) J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  8. Amin MN, Kaneco KT, Begum A, Katsumata H, Suzuki T, Ohta K (2006) Ind Eng Chem Res 45:8105

    Article  CAS  Google Scholar 

  9. Shibi IG, Anirudhan TS (2006) J Chem Technol Biotechnol 81:433

    Article  CAS  Google Scholar 

  10. Noelin BF, Manohar DM, Anirudhan TS (2005) Sep Purif Technol 45:131

    Article  Google Scholar 

  11. Gopal M, Gupta RA (2000) Indian Coconut J 31:13

    Google Scholar 

  12. Ott E (1946) Cellulose and cellulose derivatives. Interscience, NewYork

    Google Scholar 

  13. Greenberg AE, Clescerl LS, Eaton AD (1992) Standard Method for the Examination of Water and Wastewater, 18th ed.; APHA, AWWA, and WEF. Washington. D.C.

  14. Schwarz JA, Driscoll CT, Bhanot AK (1984) J Colloid Interface Sci 97:55

    Article  CAS  Google Scholar 

  15. Kotaś J, Stasicka Z (2000) Environ Poll 107(3):263

    Article  Google Scholar 

  16. Benefield LD, Judkins JP, Wend BL (1982) Process chemistry for water and wastewater treatment, Prentice Hall, Englewood Cliffs, NJ, activated charcoal. Chem Zentr 1:875

    Google Scholar 

  17. Anirudhan TS, Suchithra PS (2007) Ind Eng Chem Res 46:4606

    Article  CAS  Google Scholar 

  18. Marquardt DW (1963) J Soc Ind Appl Math 11:431

    Article  Google Scholar 

  19. Cimino G, Passerini A (2000) Water Res 34:2955

    Article  CAS  Google Scholar 

  20. Brito F, Ascanio J, Mateo S, Hernandez C, Araujo L, Gili P, Martin-Zarza P, Dominguez S, Mederos A (1997) Polyhedron 16:3835

    Article  CAS  Google Scholar 

  21. Seader JD, Henley EJ (eds) (1998) Separation process principles. Wiley, New York

    Google Scholar 

  22. Freundlich HMF (1906) Z Phys Chem 57:385

    CAS  Google Scholar 

  23. Hall KR, Engleton LC, Acrivas A, Vermeulen T (1966) Ind Eng Chem Fund 5:212

    Article  CAS  Google Scholar 

  24. Sharma DC, Forster CF (1995) Process Biochem 30:293

    CAS  Google Scholar 

  25. Young DM, Crowell AD (1962) Physical adsorption of gases. Butterworth, London

    Google Scholar 

  26. Maya R, Vinod VP, Anirudhan TS (2004) Ind Eng Chem Res 43:2247

    Article  Google Scholar 

  27. Sharma DC, Foster CF (1994) Bioresource Technol 47:257

    Article  CAS  Google Scholar 

  28. Sarin V, Pant KK (2006) Bioresource Technol 97:15

    Article  CAS  Google Scholar 

  29. Schmuhl R, Krieg HM, Keizer K (2001) Water SA 27:1

    CAS  Google Scholar 

  30. Tang PL, Lee CK, Low KS, Zainal Z (2003) Environ Technol 24:1243

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head, Department of Chemistry, University of Kerala, Trivandrum for providing laboratory facilities and Mr. S. Rijith express his sincere thanks to the University Grant Commission, New Delhi for the financial support in the form of Research Fellowship to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thayyath Sreenivasan Anirudhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anirudhan, T.S., Rijith, S. & Das Bringle, C. Iron(III) complex of an amino-functionalized poly(acrylamide)-grafted lignocellulosic residue as a potential adsorbent for the removal of chromium(VI) from water and industry effluents. J Polym Res 17, 289–299 (2010). https://doi.org/10.1007/s10965-009-9316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9316-5

Keywords

Navigation