Skip to main content
Log in

Kinetics and thermodynamics of water adsorption onto rice husks ash filled polypropene composites during soaking

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The kinetics and thermodynamics of water adsorption onto rice husks ash filled polypropene composites during soaking were studied at different temperatures, quantities and nature of fillers. Raw rice husk, “white” and “black” rice husks ash and Aerosil were used as fillers of polypropene. The increase of fillers contents in the polymer matrix was found to result in non-linear increase of the amount of adsorbed water. The highest adsorption capacity showed the samples filled with raw rice husks, while the lowest—those filled with black rice husks ash. The adsorption kinetics was limited by intra-particle diffusion in plane sheet particles. The values of the diffusion coefficients D, diffusion constants D o, activation energy of the diffusion process Е а, changes of free energy ΔG , enthalpy ΔH and entropy ΔS for the formation of the activated complex from the reagent were calculated. A compensation effect between D o and Е а was observed. Based on the Van’t Hoff equation, the values of the changes of standard free energy ΔG o, enthalpy ΔH o and entropy ΔS o of water adsorption were calculated. The sorption process is exothermal in nature and accompanied with decrease of the entropy. The values of the sorption coefficient S and permeability coefficient P were calculated at 25 and 90 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

PP:

Polypropene

RRH:

Raw rice husks

WRHA:

White rice husks ash

BRHA:

Black rice husks ash

AR:

Aerosil A200, Degussa

B 1 :

The slope of the plot \(F = {\text{f}}\left( {\sqrt t } \right)\)

B 2 :

The slope of the plot −ln(1 − F) = f(t)

C :

The concentration of fillers (mass.%)

D :

The diffusion coefficient (m2 s−1)

D o :

The diffusion constant (m2 s−1)

D iso :

The iso-kinetics diffusion coefficient (m2 s−1)

E a :

The activation energy of the sorption process (kJ mol−1)

F :

The fraction of sorbed water for period of times t (dimensionless)

K e :

The equilibrium constant

L :

The thickness of the slab (cm)

Q t :

The water uptake at time t (g)

\(Q_\infty \) :

The water uptake at equilibrium (g)

P :

The permeability coefficient (m2 s−1)

R :

The universal gas constant (8.314 J mol−1K−1)

S :

The sorption coefficient (g g−1)

T :

The absolute temperature (K)

T iso :

The iso-kinetics temperature (K)

W o :

The initial weight of the dry sample (g)

W e :

The weight of the wet sample at equilibrium at a given temperature (g)

K e :

The equilibrium constant

ΔG o :

The change of standard free energy of absorption (kJ mol−1)

ΔH o :

The change of standard enthalpy of absorption (kJ mol−1)

ΔS o :

The change of standard entropy of absorption (J mol−1K−1)

ΔG :

The change of free energy for the formation of the activated complex from the reagent (kJ mol−1)

ΔH :

The change of enthalpy for the formation of the activated complex from the reagent (kJ mol−1)

ΔS :

The change of entropy for the formation of the activated complex from the reagent (J mol−1K−1)

d :

The average molecular jump distance assuming equal to 5 × 10−10 m

e :

The Neper number, equal to 2.7183

h :

The Planck’s constant (6.626 × 10−34 J s)

k B :

The Boltzmann constant (1.38 × 10−23 J mol−1K−1)

m e :

The mass of the water taken up at equilibrium (g)

r :

The radius of cylinder or fiber (cm)

r o :

The radius of the spherical particles (cm)

t :

Time (h)

α :

The rate of chemisorption at zero coverage or the initial adsorption rate (mg g−1 min−1)

α n :

The roots of the first species of Bessel’s function and order 0 (dimensionless)

β :

The extent of surface coverage and the activation energy involved in chemisorption (g mg−1)

References

  1. Ishak ZAM, Yow BN, Ng BL, Khalil HPSA, Rozman HD (2001) J Appl Polym Sci 81:742 doi:10.1002/app.1491

    Article  CAS  Google Scholar 

  2. Premalal HGB, Ismail H, Baharin A (2003) Polym Plast Technol Eng 42:827 doi:10.1081/PPT-120024998

    Article  CAS  Google Scholar 

  3. Ismail H, Mohamad Z, Bakar AA (2003) Polym Plast Technol Eng 42:81 doi:10.1081/PPT-120016337

    Article  CAS  Google Scholar 

  4. Gouanve E, Marais S, Bessadok A, Langevin D, Metayer M (2007) Eur Polym J 43:586 doi:10.1016/j.eurpolymj.2006.10.023

    Article  CAS  Google Scholar 

  5. Pehlivan H, Ozmihci F, Tihminlioglu T, Ulku S (2003) J Appl Polym Sci 90:3069 doi:10.1002/app.13046

    Article  CAS  Google Scholar 

  6. Joly C, Gauthier R, Escoubes M (1996) J Appl Polym Sci 61:57 doi:10.1002/(SICI)1097-4628(19960705)61:1<57::AID-APP7>3.0.CO;2-T

    Article  CAS  Google Scholar 

  7. Jacob M, Varughese KT, Thomas S (2005) Biomacromolecules 6:2969 doi:10.1021/bm050278p

    Article  CAS  Google Scholar 

  8. Razavi-Nouri M, Dogouri FJ, Oromiehie A, Langroudi AE (2006) Iranian. Polym J 15:757

    CAS  Google Scholar 

  9. Kumar U, Bandyopadhyay M (2006) Bioresour Technol 97:104 doi:10.1016/j.biortech.2005.02.027

    Article  CAS  Google Scholar 

  10. Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) Water Res 33:2469 doi:10.1016/S0043-1354(98)00475-8

    Article  CAS  Google Scholar 

  11. Chuah TG, Jumasiah A, Aznu I, Katayon S, Thomas Choong SY (2005) Desalination 175:305 doi:10.1016/j.desal.2004.10.014

    Article  CAS  Google Scholar 

  12. Fuad MYA, Ismail Z, Mansor MS, Ishak ZAM, Omar AKM (1995) Polym J 27:1002 doi:10.1295/polymj.27.1002

    Article  CAS  Google Scholar 

  13. Chaudhary DS, Jollands MC, Cser F (2002) Silicon Chem 1:281 doi:10.1023/B:SILC.0000018361.66866.80

    Article  CAS  Google Scholar 

  14. Premalal HGB, Ismail H, Baharin A (2002) Polym Test 21:833 doi:10.1016/S0142-9418(02)00018-1

    Article  CAS  Google Scholar 

  15. Panthapulakkal S, Law S, Sain M (2005) J Thermoplastic Comp Mater 18:445 doi:10.1177/0892705705054398

    Article  CAS  Google Scholar 

  16. Toro P, Quijada R, Murillo O, Yazdani-Pedram M (2005) Polym Int 54:30 doi:10.1002/pi.1740

    Article  Google Scholar 

  17. Misra S, Verma J (2006) J Appl Polym Sci 101:2530 doi:10.1002/app.23916

    Article  Google Scholar 

  18. Namasivayam C, Sangeetha D, Gunasekharan R (2007) Process Saf Environ Prot 85(B2):181 doi:10.1205/psep05002

    Article  CAS  Google Scholar 

  19. Boyd GE, Adamson AW, Myers LS Jr (1947) J Am Chem Soc 69:2836 doi:10.1021/ja01203a066

    Article  CAS  Google Scholar 

  20. Noroozi B, Sorial GA, Bahrami H, Arami M (2007) J Hazard Mater B139:167 doi:10.1016/j.jhazmat.2006.06.021

    Article  Google Scholar 

  21. Ton-That TM, Jungnickel B-J (1999) J Appl Polym Sci 74:3275 doi:10.1002/(SICI)1097-4628(19991220)74:13<3275::AID-APP31>3.0.CO;2-2

    Article  CAS  Google Scholar 

  22. Crank J (1975) Mathematics of diffusion, 2nd ed. Oxford University Press, Oxford

    Google Scholar 

  23. Angot A (1965) Complements de mathematiques, Cinquieme Edition, Collection technique scientifique du CNET

  24. Gasser MS, Morad GA, Aly HF (2006) Adsorption 12:65 doi:10.1007/s10450-006-0139-y

    Article  CAS  Google Scholar 

  25. Gercel O, Ozcan AS, Gercel HF (2007) Appl Surf Sci 253:4843 doi:10.1016/j.apsusc.2006.10.053

    Article  CAS  Google Scholar 

  26. Boyd GE, Soldano BA (1953) J Am Chem Soc 75:6105 doi:10.1021/ja01120a003

    Article  CAS  Google Scholar 

  27. Ruvolo-Filho A, Curti PS (2006) Ind Eng Chem Res 45:7985 doi:10.1021/ie060528y

    Article  CAS  Google Scholar 

  28. Nikolaev AV, Logvinenko VA, Gorbatchov VM, Myachina LA (1974) Thermal Analysis. In: Buzas I (ed) Proc. Fourth ICTA, Budapest Vol. 1. p 47

  29. Agrawal RK (1986) J Therm Anal 31:73 doi:10.1007/BF01913888

    Article  CAS  Google Scholar 

  30. Vlaev LT, Georgieva VG, Genieva SD (2007) Oxid Comm 30:19

    CAS  Google Scholar 

  31. Zmijewski T, Pysiak J (1974) Thermal analysis. In: Buzas I (ed) Processing of the Fourth ICTA, Budapest Vol. 1. p 205

  32. Dombrowsky NM (1968) Kinetika I Kataliz 9:251 in Russian

    Google Scholar 

  33. Agrawal KR (1986) J Therm Anal 31:73 doi:10.1007/BF01913888

    Article  CAS  Google Scholar 

  34. Malik UR, Hasany SM, Subhani MS (2005) Talanta 66:166 doi:10.1016/j.talanta.2004.11.013

    Article  CAS  Google Scholar 

  35. Akhtar M, Hasany SM, Bhanger MI, Iqbal S (2007) Chemosphere 66:1829 doi:10.1016/j.chemosphere.2006.09.006

    Article  CAS  Google Scholar 

  36. Li X, Tabil LG, Panigrahi S (2007) J Polym Environ 15:25 doi:10.1007/s10924-006-0042-3

    Article  Google Scholar 

  37. Little LH (1969) Infrared spectra of adsorbed species. Mir, Moscow

    Google Scholar 

  38. Kiselev AV, Lygin VI (1972) Infrared spectra surface compounds. Nauka, Moscow

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevdalina Turmanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlaev, L., Turmanova, S. & Dimitrova, A. Kinetics and thermodynamics of water adsorption onto rice husks ash filled polypropene composites during soaking. J Polym Res 16, 151–164 (2009). https://doi.org/10.1007/s10965-008-9213-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-008-9213-3

Keywords

Navigation