Skip to main content
Log in

A Method for Improving Ionic Conductivity of Nafion Membranes and its Application to PEMFC

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this paper, we show that proton conductivity and PEMFC performance of Nafion membranes prepared by solutions casting can be improved by aligning the side cahin ionic aggregations along the membrane thickness direction using an electric field. The nano-structures of Nafion membranes prepared by solutions casting with applying an electric field were investigated using transmission electron microscopy (TEM), which clearly shows fibril-like structures of Nafion molecular aggregations aligned along the electric field. The alignment of ionic aggregations along the membrane thickness direction causes linear and less curved proton transferring pathways across the membrane cross section and thus a higher proton conductivity and a better PEMFC performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. G. F. Grot, Nafion as a separator in electrolytic cells, Nafion perfluoronated membranes product bulletin, Du Pont Co, Wilmington, DE, 1986.

    Google Scholar 

  2. F. G. Will, J. Electrochem. Soc., 126, 36 (1979).

    Article  CAS  Google Scholar 

  3. R. S. Yeo and D. T. Chin, J. Electrochem. Soc., 127, 549 (1980).

    Article  CAS  Google Scholar 

  4. N. Kakuta, K. H. Park, M. F. Finlayson, A. Ueno, A. J. Bard, A. Campion, M. A. Fox, S. E. Webber and J. M. White, J. Phys. Chem., 89, 732 (1985).

    Article  CAS  Google Scholar 

  5. W. G. Grot and F. Chadds, Eur. Patentbl., 0,066,369 (1982).

  6. H. W. McCain, L. L. Benezra and C. E. Finch, Eur. Patentbl., 0,079,218 (1983).

  7. I. Rubinstein and A. J. Bard, J. Am. Chem. Soc., 102, 6641 (1980).

    Article  CAS  Google Scholar 

  8. R. B. Moore and C. R. Martin, Anal. Chem., 58, 2569 (1986).

    Article  CAS  Google Scholar 

  9. R. B. Moore and C. R. Martin, Macromolecules, 21, 1334 (1988).

    Article  CAS  Google Scholar 

  10. G. Gebel, P. Aldebert and M. Pineri, Macromolecules, 20, 1425 (1987).

    Article  CAS  Google Scholar 

  11. J. Weber, P. Janda and L. Kavan, Electrochemical, J. Electroanal Chem., 199, 81 (1986); 200, 379 (1986).

    Article  CAS  Google Scholar 

  12. K. Amundson, E. Helfand, D. D. Davis, X. Quan and S. S. Patel, Macromolecules, 24, 6546 (1991).

    Article  CAS  Google Scholar 

  13. T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky and T. P. Russel, Science, 271, 931 (1996).

    Article  Google Scholar 

  14. P. Alderbert, B. Dreyfus and M. Pineri, Macromolecules, 19, 265 (1986).

    Google Scholar 

  15. B. Loppinet, G. Gebel and C. E. Williams, J. Phys. Chem., B, 101, 188 (1997).

    Article  Google Scholar 

  16. E. Szajdzinska-Pietek and S. Schlick, Langmuir, 10, 1101; 2188 (1994).

  17. H. Li and S. Schlick, Polymer, 36, 1141 (1995).

    Article  CAS  Google Scholar 

  18. P. A. Cirkel, T. Okada and S. Kinugasa, Macromolecules, 32, 531 (1999).

    Article  CAS  Google Scholar 

  19. S. Jiang, K. Q. Xia and G. Xu, Macromolecules, 34, 7783 (2001).

    Article  CAS  Google Scholar 

  20. S. J. Lee, T. L. Yu, H. L. Lin, W. H. Liu and C. L. Lai, Polymer, 45, 2853 (2004).

    Article  CAS  Google Scholar 

  21. E. J. Roche, M. Pineri, R. Duplessix and A. M. Levelut, J. Polym. Sci., Polym. Phys. Ed., 19, 1 (1981).

    Article  CAS  Google Scholar 

  22. T. D. Gierke, G. E. Munn and F. C. Wilson, J. Polym. Sci., Polym. Phys. Ed., 19, 1687 (1981).

    Article  CAS  Google Scholar 

  23. M. Fujimura, T. Hashimoto and H. Kawai, Macromolecules, 14, 1309 (1981).

    Article  CAS  Google Scholar 

  24. M. Fujimura, T. Hashimoto and H. Kawai, Macromolecules, 15, 136 (1982).

    Article  CAS  Google Scholar 

  25. S. Kumar and M. Pineri, J. Polym. Sci., Polym. Phys. Ed., 24, 1767 (1986).

    Article  CAS  Google Scholar 

  26. J. Halim, G. G. Scherer and M. Stamm, Macromol. Chem. Phys., 195, 3783 (1994).

    Article  CAS  Google Scholar 

  27. J. A. Elliot, S. Hanna, A. M. S. Elliot and G. E. Cooley, Macromolecules, 33, 4161 (2000).

    Article  CAS  Google Scholar 

  28. G. Gebel and J. Lambard, Macromolecules, 30, 7914 (1997).

    Article  CAS  Google Scholar 

  29. G. Gebel, Polymer, 41, 5829 (2000).

    Article  CAS  Google Scholar 

  30. H. W. Starkweather, Macromolecules, 15, 320 (1982).

    Article  CAS  Google Scholar 

  31. M. H. Litt, Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.), 38, 80 (1997).

    CAS  Google Scholar 

  32. L. Rubatat, A. L. Rollet, G. Gebel and O. Diat, Macromolecules, 35, 4050 (2002).

    Article  CAS  Google Scholar 

  33. L. Rubatat, G. Gebel and O. Diat, Macromolecules, 37, 7772 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Leon Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, HL., Yu, T.L. & Han, FH. A Method for Improving Ionic Conductivity of Nafion Membranes and its Application to PEMFC. J Polym Res 13, 379–385 (2006). https://doi.org/10.1007/s10965-006-9055-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-006-9055-9

Key words

Navigation