Skip to main content
Log in

Isotropic Covariance Matrix Functions on Compact Two-Point Homogeneous Spaces

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

The covariance matrix function is characterized in this paper for a Gaussian or elliptically contoured vector random field that is stationary, isotropic, and mean square continuous on the compact two-point homogeneous space. Necessary and sufficient conditions are derived for a symmetric and continuous matrix function to be an isotropic covariance matrix function on all compact two-point homogeneous spaces. It is also shown that, for a symmetric and continuous matrix function with compact support, if it makes an isotropic covariance matrix function in the Euclidean space, then it makes an isotropic covariance matrix function on the sphere or the real projective space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Askey, R.: Jacobi polynomials. I. New proofs of Koornwinder’s Laplace type integral representation and Bateman’s bilinear sum. SIAM J. Math. Anal. 5, 119–124 (1974)

    Article  MathSciNet  Google Scholar 

  2. Askey, R., Bingham, N.H.: Gaussian processes on compact symmetric spaces. Z. Wahrscheinlichkeitstheorie verw. Gebiete 37, 127–143 (1976)

    Article  MathSciNet  Google Scholar 

  3. Azevedo, D., Barbosa, V.S.: Covering numbers of isotropic reproducing kernels on compact two-point homogeneous spaces. Math. Nachr. 290, 2444–2458 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bhattacharya, A., Bhattacharya, R.: Nonparametric Inference on Manifolds. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  5. Bingham, N.H.: Positive definite functions on spheres. Proc. Camb. Philos. Soc. 73, 145–156 (1973)

    Article  MathSciNet  Google Scholar 

  6. Bochner, S.: Hilbert distance and positive definite functions. Ann. Math. 42, 647–656 (1941)

    Article  MathSciNet  Google Scholar 

  7. Brown, G., Dai, F.: Approximation of smooth functions on compact two-point homogeneous spaces. J. Funct. Anal. 220, 401–423 (2005)

    Article  MathSciNet  Google Scholar 

  8. Cheng, D., Xiao, Y.: Excursion probability of Gaussian random fields on sphere. Bernoulli 22, 1113–1130 (2016)

    Article  MathSciNet  Google Scholar 

  9. Cohen, S., Lifshits, M.A.: Stationary Gaussian random fields on hyperbolic spaces and on Euclidean spheres. ESAIM Probab. Stat. 16, 165–221 (2012)

    Article  MathSciNet  Google Scholar 

  10. D’Ovidio, M.: Coordinates changed random fields on the sphere. J. Stat. Phys. 154, 1153–1176 (2014)

    Article  MathSciNet  Google Scholar 

  11. de Boor, C.: Divided differences. Surv. Approx. Theory 1, 46–69 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Gangolli, R.: Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters. Ann Inst H Poincaré B 3, 121–226 (1967)

    MathSciNet  MATH  Google Scholar 

  13. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 7th edtion. Academic Press, Amsterdam (2007)

    Google Scholar 

  14. Helgason, S.: Integral Geometry and Radon Transforms. Springer, New York (2011)

    Book  Google Scholar 

  15. Leonenko, N., Sakhno, L.: On spectral representation of tensor random fields on the sphere. Stoch. Anal. Appl. 31, 167–182 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Leonenko, N., Shieh, N.: Rényi function for multifractal random fields. Fractals 21, 1350009, 13 pp (2013)

  17. Ma, C.: Vector random fields with second-order moments or second-order increments. Stoch. Anal. Appl. 29, 197–215 (2011)

    Article  MathSciNet  Google Scholar 

  18. Ma, C.: Isotropic covariance matrix functions on all spheres. Math. Geosci. 47, 699–717 (2015)

    Article  MathSciNet  Google Scholar 

  19. Ma, C.: Stochastic representations of isotropic vector random fields on spheres. Stoch. Anal. Appl. 34, 389–403 (2016)

    Article  MathSciNet  Google Scholar 

  20. Ma, C.: Time varying isotropic vector random fields on spheres. J. Theor. Prob. 30, 1763–1785 (2017)

    Article  MathSciNet  Google Scholar 

  21. Ma, C., Malyarenko, A.: Time-varying isotropic vector random fields on compact two-point homogeneous spaces. J. Theor. Probab. (Accepted)

  22. Malyarenko, A.: Invariant Random Fields on Spaces with a Group Action. Springer, New York (2013)

    Book  Google Scholar 

  23. Malyarenko, A., Olenko, A.: Multidimensional covariant random fields on commutative locally compact groups. Ukr. Math. J. 44, 1384–1389 (1992)

    Article  MathSciNet  Google Scholar 

  24. Nie, Z., Ma, C.: Isotropic positive definite functions on spheres generated from those in Euclidean spaces. Proc. Am. Math. Soc. 147, 3047–3056 (2019)

    Article  MathSciNet  Google Scholar 

  25. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  26. Patrangenaru, V., Ellingson, L.: Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis. Taylor & Francis Group, LLC, New York (2016)

    MATH  Google Scholar 

  27. Schoenberg, I.: Positive definite functions on spheres. Duke Math. J. 9, 96–108 (1942)

    Article  MathSciNet  Google Scholar 

  28. Szegö, G.: Orthogonal Polynomials. Amer. Math. Soc. Colloq. Publ., vol. 23, 4th edn. American Mathematical Society, Providence (1975)

    Google Scholar 

  29. Wang, H.-C.: Two-point homogenous spaces. Ann. Math. 55, 177–191 (1952)

    Article  MathSciNet  Google Scholar 

  30. Wang, R., Du, J., Ma, C.: Covariance matrix functions of isotropic vector random fields. Commun. Stat. Theory Med. 43, 2081–2093 (2014)

    Article  MathSciNet  Google Scholar 

  31. Xu, Y.: Positive definite functions on the unit sphere and integrals of Jacobi polynomials. Proc. Am. Math. Soc. 146, 2039–2048 (2018)

    Article  MathSciNet  Google Scholar 

  32. Yadrenko, A.M.: Spectral Theory of Random Fields. Optimization Software, New York (1983)

    MATH  Google Scholar 

  33. Yaglom, A.M.: Second-order homogeneous random fields. In: Proceedings of 4th Berkeley Symposium on Mathematical Statistics and Probability, vol. 2, pp. 593–622 (1961)

  34. Yaglom, A.M.: Correlation Theory of Stationary and Related Random Functions, vol. I. Springer, New York (1987)

    Book  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referee and an associate editor for careful reading of our manuscript and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunsheng Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Ma, C. Isotropic Covariance Matrix Functions on Compact Two-Point Homogeneous Spaces. J Theor Probab 33, 1630–1656 (2020). https://doi.org/10.1007/s10959-019-00920-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-019-00920-1

Keywords

Mathematics Subject Classification (2010)

Navigation