Skip to main content
Log in

Compactly-Supported Isotropic Covariances on Spheres Obtained from Matrix-Valued Covariances in Euclidean Spaces

  • Published:
Constructive Approximation Aims and scope

Abstract

Let pd be positive integers, with d odd. Let \(\varvec{\phi }:[0,+\infty ) \rightarrow {\mathbb {R}}^{p \times p}\) be the isotropic part of a matrix-valued and isotropic covariance function (a positive semidefinite matrix-valued function) that is defined over the d-dimensional Euclidean space. If \(\varvec{\phi }\) is compactly supported over \([0,\pi ]\), then we show that the restriction of \(\varvec{\phi }\) to \([0,\pi ]\) is the isotropic part of a matrix-valued covariance function defined on a d-dimensional sphere, where isotropy in this case means that the covariance function depends on the geodesic distance. Our result does not need any assumption of continuity for the mapping \(\varvec{\phi }\). Further, when \(\varvec{\phi }\) is continuous, we provide an analytical expression of the d-Schoenberg sequence associated with the compactly-supported covariance on the sphere, which only requires knowledge of the Fourier transform of its isotropic part, and illustrate with the Gauss hypergeometric covariance model, which encompasses the well-known spherical, cubic, Askey and generalized Wendland covariances, and with a hole effect covariance model. Special cases of the results presented in this paper have been provided by other authors in the past decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alegría, A., Emery, X., Lantuéjoul, C.: The turning arcs: a computationally efficient algorithm to simulate isotropic vector-valued Gaussian random fields on the \(d\)-sphere. Stat. Comput. 30(5), 1403–1418 (2020)

    MathSciNet  MATH  Google Scholar 

  2. Alegría, A., Porcu, E., Furrer, R., Mateu, J.: Covariance functions for multivariate Gaussian fields evolving temporally over planet Earth. Stoch. Env. Res. Risk Assess. 33(8–9), 1593–1608 (2019)

  3. Arroyo, D., Emery, X.: Algorithm 1013: an R implementation of a continuous spectral algorithm for simulating vector gaussian random fields in Euclidean spaces. ACM Trans. Math. Softw. 47(1), 1–25 (2021)

    MathSciNet  MATH  Google Scholar 

  4. Askey, R.: Orthogonal expansions with positive coefficients. Proc. Am. Math. Soc. 16(6), 1191–1194 (1965)

    MathSciNet  MATH  Google Scholar 

  5. Askey, R.: Radial characteristic functions. Technical Report No. 1262. Mathematics Research Center, University of Wisconsin-Madison (1973)

  6. Beatson, R.K., de Castell, W., Xu, Y.: A Pólya criterion for (strict) positive-definiteness on the sphere. IMA J. Numer. Anal. 34(2), 550–568 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Bevilacqua, M., Diggle, P.J., Porcu, E.: Families of covariance functions for bivariate random fields on spheres. Spat. Stat. 40, 100448 (2020)

    MathSciNet  Google Scholar 

  8. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridege University Press (2004)

    MATH  Google Scholar 

  9. Buhmann, M.: A new class of radial basis functions with compact support. Math. Comput. 70(233), 307–318 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Chilès, J.-P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty, 2nd edn. Wiley (2012)

    MATH  Google Scholar 

  11. Crum, M.: On positive-definite functions. Proc. Lond. Math. Soc. 3(4), 548–560 (1956)

    MathSciNet  MATH  Google Scholar 

  12. Emery, X., Alegría, A.: A spectral algorithm to simulate nonstationary random fields on spheres and multifractal star-shaped random sets. Stoch. Env. Res. Risk Assess. 34(12), 2301–2311 (2020)

    Google Scholar 

  13. Emery, X., Alegría, A.: The Gauss hypergeometric covariance kernel for modeling second-order stationary random fields in Euclidean spaces: its compact support, properties and spectral representation. Stoch. Env. Res. Risk Assess. 36(9), 2819–2834 (2022)

    Google Scholar 

  14. Emery, X., Arroyo, D., Mery, N.: Twenty-two families of multivariate covariance kernels on spheres, with their spectral representations and sufficient validity conditions. Stoch. Env. Res. Risk Assess. 36(5), 1447–1467 (2022)

    Google Scholar 

  15. Emery, X., Peron, A.P., Porcu, E.: Dimension walks on hyperspheres. Comput. Appl. Math. 41(5), 199 (2022)

    MathSciNet  MATH  Google Scholar 

  16. Emery, X., Porcu, E.: Simulating isotropic vector-valued Gaussian random fields on the sphere through finite harmonics approximations. Stoch. Env. Res. Risk Assess. 33(8–9), 1659–1667 (2019)

    Google Scholar 

  17. Emery, X., Porcu, E., Bissiri, P.G.: A semiparametric class of axially symmetric random fields on the sphere. Stoch. Env. Res. Risk Assess. 33(10), 1863–1874 (2019)

    Google Scholar 

  18. Feng, H., Ge, Y.: Isotropic positive definite functions on spheres. J. Funct. Anal. 282(1), 109287 (2022)

    MathSciNet  MATH  Google Scholar 

  19. Fournier, A., Aubert, J., Thébault, E.: Inference on core surface flow from observations and 3-D dynamo modelling. Geophys. J. Int. 186, 118–136 (2011)

    Google Scholar 

  20. Furrer, R., Genton, M.G., Nychka, D.: Covariance tapering for interpolation of large spatial datasets. J. Comput. Graph. Stat. 15(3), 502–523 (2006)

    MathSciNet  Google Scholar 

  21. Gangolli, R.: Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters. Annales de l’Institut Henri Poincaré, section B 3(2), 121–226 (1967)

    MathSciNet  MATH  Google Scholar 

  22. Gneiting, T.: Radial positive definite functions generated by Euclid’s hat. J. Multivar. Anal. 69(1), 88–119 (1999)

    MathSciNet  MATH  Google Scholar 

  23. Gneiting, T.: Strictly and non-strictly positive definite functions on spheres. Bernoulli 19(4), 1327–1349 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Guella, J., Menegatto, V.: Positive definite matrix functions on spheres defined by hypergeometric functions. Integral Transform. Spec. Funct. 30(10), 774–789 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Hannan, E.: Multiple Time Series. Wiley Series in Probability and Statistics, Wiley (2009)

    Google Scholar 

  26. Heaton, M., Katzfuss, M., Berrett, C., Nychka, D.: Constructing valid spatial processes on the sphere using kernel convolutions. Environmetrics 25(1), 2–15 (2014)

    MathSciNet  Google Scholar 

  27. Hofmann-Wellenhof, B., Moritz, H.: Physical Geodesy. Springer, Cham (2006)

    Google Scholar 

  28. Hubbert, S.: Closed form representations for a class of compactly supported radial basis functions. Adv. Comput. Math. 36(1), 115–136 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Kaufman, C.G., Schervish, M.J., Nychka, D.W.: Covariance tapering for likelihood-based estimation in large spatial data sets. J. Am. Stat. Assoc. 103(484), 1545–1555 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Lantuéjoul, C., Freulon, X., Renard, D.: Spectral simulation of isotropic Gaussian random fields on a sphere. Math. Geosci. 51(8), 999–1020 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Ma, C.: Stochastic representations of isotropic vector random fields on spheres. Stoch. Anal. Appl. 34(3), 389–403 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Marinucci, D., Peccati, G.: Random Fields on the Sphere: Representation, Limit Theorems and Cosmological Applications. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  33. Matheron, G.: Les Variables Régionalisées et Leur Estimation. Masson, Paris (1965)

    Google Scholar 

  34. Matheron, G.: Quelques aspects de la montée. Technical Report N. 271. Centre de Morphologie Mathématique, Paris School of Mines (1972)

  35. Nie, Z., Ma, C.: Isotropic positive definite functions on spheres generated from those in Euclidean spaces. Proc. Am. Math. Soc. 147(7), 3047–3056 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Olver, F.W., Lozier, D.M., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  37. Porcu, E., Bevilacqua, M., Genton, M.G.: Spatio-temporal covariance and cross-covariance functions of the great circle distance on a sphere. J. Am. Stat. Assoc. 111(514), 888–898 (2016)

    MathSciNet  Google Scholar 

  38. Porcu, E., Zastavnyi, V.: Generalized Askey functions and their walks through dimensions. Expo. Math. 32(2), 169–174 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Sánchez, L.K., Emery, X., Séguret, S.A.: 5D geostatistics for directional variables: application in geotechnics to the simulation of the linear discontinuity frequency. Comput. Geosci. 133, 104325 (2019)

    Google Scholar 

  40. Sánchez, L.K., Emery, X., Séguret, S.A.: Geostatistical modeling of rock quality designation (RQD) and geotechnical zoning accounting for directional dependence and scale effect. Eng. Geol. 293, 106338 (2021)

    Google Scholar 

  41. Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. 9(1), 96–108 (1942)

    MathSciNet  MATH  Google Scholar 

  42. Wackernagel, H.: Multivariate Geostatistics: An Introduction with Applications, 3rd edn. Springer, New York (2003)

    MATH  Google Scholar 

  43. Williamson, R.: Multiply monotone functions and their Laplace transforms. Duke Math. J. 23(2), 189–207 (1956)

    MathSciNet  MATH  Google Scholar 

  44. Wolfram Research, I.: The Mathematical Functions Site. Last visited on 28/12/2021 (2021)

  45. Xu, Y.: Positive definite functions on the unit sphere and integrals of Jacobi polynomials. Proc. Am. Math. Soc. 146(5), 2039–2048 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Yadrenko, M.I.: Spectral Theory of Random Fields. Springer, New York (1983)

    MATH  Google Scholar 

  47. Yaglom, A.: Correlation Theory of Stationary and Related Random Functions, Volume I: Basic Results. Springer, New York (1987)

    MATH  Google Scholar 

  48. Zastavnyi, V., Trigub, R.: Positive-definite splines of special form. Sbornik Math. 193, 1771 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Agency for Research and Development of Chile [grants ANID/FONDECYT/REGULAR/No. 1210050 and ANID PIA AFB220002, and postgraduate study scholarship ANID-Subdirección de Capital Humano/Doctorado Nacional/2022-21220317], and by Khalifa University of Science and Technology [grant FSU-2021-016]. The authors acknowledge two anonymous reviewers for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Porcu.

Additional information

Communicated by Edward. B. Saff.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emery, X., Mery, N., Khorram, F. et al. Compactly-Supported Isotropic Covariances on Spheres Obtained from Matrix-Valued Covariances in Euclidean Spaces. Constr Approx 58, 181–198 (2023). https://doi.org/10.1007/s00365-022-09603-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-022-09603-3

Keywords

Navigation