Skip to main content
Log in

Tridiagonal Random Matrix: Gaussian Fluctuations and Deviations

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

This paper is devoted to the Gaussian fluctuations and deviations of the traces of tridiagonal random matrices. Under quite general assumptions, we prove that the traces are approximately normally distributed. A Multi-dimensional central limit theorem is also obtained here. These results have several applications to various physical models and random matrix models, such as the Anderson model, the random birth–death Markov kernel, the random birth–death Q matrix and the \(\beta \)-Hermite ensemble. Furthermore, under an independent-and-identically-distributed condition, we also prove the large deviation principle as well as the moderate deviation principle for the traces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The subindices of \(X_{k,i}\) here start with 2, since, for example, in the case \(d_i=f(a_{i-1},a_i)\), \(i\ge 1\), the distribution of \(d_1(=f(0,a_1))\) is different from that of \(d_i=f(a_{i-1},a_i)\), \(i\ge 2\).

  2. In [30, (3.5)], \(m_2^{k+l}\), \(m_2^{\mathbb {I}_h(\gamma _1)+\mathbb {I}_h(\gamma _2)}\) and the denominator \({\alpha }(k+l)\) shall be modified by \(m_2^{\frac{1}{2}(k+l)}\), \(m_2^{\frac{1}{2} (\mathbb {I}_i(\gamma _1)+\mathbb {I}_i(\gamma _2))}\) and \({\alpha }(k+l)+1-2{\alpha }\), respectively.

  3. In [30, Corollary 2], the terms \(\frac{kl}{{\alpha }(k+l)}\) in the even and odd cases shall be modified by \(\frac{kl\sigma _Z^2}{{\alpha }(k+l)+1-2{\varepsilon }}\) and \(\frac{kl\sigma _d^2}{{\alpha }(k+l)+1-2{\alpha }}\), respectively.

References

  1. Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  2. Bai, Z.D., Silverstein, J.: Spectral Analysis of Large Dimensional Random Matrices. Springer Series in Statistics, 2nd edn. Springer, New York (2010)

    Book  MATH  Google Scholar 

  3. Ben Arous, G., Guionnet, A.: Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Probab. Theory Relat. Fields 108(4), 517–542 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben Arous, G., Zeitouni, O.: Large deviations from the circular law. ESAIM Probab. Stat. 2, 123–134 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bordenave, C., Caputo, P., Chafaï, D.: Spectrum of large random reversible Markov chains: two examples. ALEA Lat. Am. J. Probab. Math. Stat. 7, 41–64 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Bose, A., Sen, S.: Finite diagonal random matrices. J. Theor. Probab. 26(3), 819–835 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carmona, R., Lacroix, J.: Spectral Theory of Random Schrödinger Operators. Birkhäuser, Boston (1990)

    Book  MATH  Google Scholar 

  8. Chafaï, D.: Aspects of large random Markov kernels. Stochastics 81(3–4), 415–429 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Chung, K.L.: A Course in Probability Theory. Probability and Mathematical Statistics, vol. 21, 2nd edn. Academic, New York (1974)

    Google Scholar 

  10. de Acosta, A., Ney, P.: Large deviations for additive functionals of Markov chains. In: Memoirs of the American Mathematical Society, vol. 228, no. 1070, pp. vi+108 (2014)

  11. Dedecker, J., Merlevède, F., Peligrad, M., Utev, S.: Moderate deviations for stationary sequences of bounded random variables. Ann. Inst. Henri Poincaré Probab. Stat. 45(2), 453–476 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dembo, A., Guionnet, A., Zeitouni, O.: Moderate deviations for the spectral measure of certain random matrices. Ann. Inst. H. Poincaré Probab. Stat. 39(6), 1013–1042 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dembo, A., Zeitouni, O.: Large deviations techniques and applications. Corrected reprint of the second (1998) edn. In: Stochastic Modelling and Applied Probability, vol. 38, pp. xvi+396. Springer, Berlin (2010)

  14. Diaconis, P., Shahshahani, M.: On the eigenvalues of random matrices. Studies in applied probability. J. Appl. Probab. 31A, 49–62 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Döring, H., Eichelsbacher, P.: Moderate deviations via cumulants. J. Theor. Probab. 26(2), 360–385 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Döring, H., Eichelsbacher, P.: Moderate deviations for the eigenvalue counting function of Wigner matrices. ALEA Lat. Am. J. Probab. Math. Stat. 10(1), 27–44 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Dumitriu, I., Edelman, A.: Matrix models for beta ensembles. J. Math. Phys. 43(11), 5830–5847 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dumitriu, I., Edelman, A.: Global spectrum fluctuations for the \(\beta \)-Hermite and \(\beta \)-Laguerre ensembles via matrix models. J. Math. Phys. 47(6), 063302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Durrett, R.: Probability: Theory and Examples. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  20. Ellis, R.S.: Large deviations for the empirical measure of a Markov chain with an application to the multivariate empirical measure. Ann. Probab. 16(4), 1496–1508 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goldsheid, I.Y., Khoruzhenko, B.A.: The Thouless formula for random non-Hermitian Jacobi matrices. Probability in mathematics. Israel J. Math. 148, 331–346 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guionnet, A.: Large Random Matrices: Lectures on Macroscopic Asymptotics. Lecture Notes in Mathematics, vol. 1957. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  23. Han, D., Zhang, D.: Limiting spectral distribution of random birth-death \(Q\) matrices (in Chinese). Sci. Sin. Math. 45, 539–558 (2015). doi:10.1360/N012015-00065

    Google Scholar 

  24. Hoeffding, W., Robbins, H.: The central limit theorem for dependent random variables. Duke Math. J. 15, 773–780 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  25. Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lytova, A., Pastur, L.: Central limit theorem for linear eigenvalue statistics of random matrices with independent entries. Ann. Probab. 37(5), 1778–1840 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Merlevède, F., Peligrad, M.: Moderate deviations for linear processes generated by martingale-like random variables. J. Theor. Probab. 23(1), 277–300 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Merlevède, F., Peligrad, M., Rio, E.: A Bernstein type inequality and moderate deviations for weakly dependent sequences. Probab. Theory Relat. Fields 151(3–4), 435–474 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pastur, L.A., Figotin, A.L.: Spectra of Random and Almost-periodic Operators. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  30. Popescu, I.: General tridiagonal random matrix models, limiting distributions and fluctuations. Probab. Theory Relat. Fields 144(1–2), 179–220 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Soshnikov, A.: Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal random point fields. J. Stat. Phys. 100(3–4), 491–522 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Soshnikov, A.: Gaussian limit for determinantal random point fields. Ann. Probab. 30(1), 171–187 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, L.M.: Moderate deviations of dependent random variables related to CLT. Ann. Probab. 23(1), 420–445 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, D.: Gaussian fluctuations of eigenvalues in log-gas ensemble: bulk case I. Acta Math. Sin. (Engl. Ser.) 31(9), 1487–1500 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, D.: Gaussian fluctuations of eigenvalues in unitary invariant ensemble, arXiv:1409.4008

Download references

Acknowledgments

The author is grateful to Professor Dong Han for several valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deng Zhang.

Additional information

This work is supported by National Basic Research Program of China (973 Program, 2011CB808000, 2015CB856004), National Natural Science Foundations of China (11171216) and China Postdoctoral Science Foundation Funded Project (2015M581598).

Appendix

Appendix

Proof of (3.13)

By Assumption (H.1) and (H.2),

$$\begin{aligned} \sup \limits _{i\ge 1} {\mathbb {E}}|n^{-{\alpha }k} \widetilde{Q}_{l,i}^{\overrightarrow{m}_l, \overrightarrow{n}_l}|^2 < {\infty }, \end{aligned}$$
(6.1)

where \(\widetilde{Q}_{l,i}^{\overrightarrow{m}_l} = Q_{l,i}^{\overrightarrow{m}_l} - {\mathbb {E}}Q_{l,i}^{\overrightarrow{m}_l}\). Hence,

$$\begin{aligned}&\Vert n^{-{\alpha }k} (Tr \widetilde{Q_n^k} - \sum \limits _{i=1}^n \widetilde{X}_{k,i}) \Vert _2 \\&\quad =\Vert \sum \limits _{(l,\overrightarrow{m}_l,\overrightarrow{n}_l)\in \Psi _k} C_l^{\overrightarrow{m}_l, \overrightarrow{n}_l} \sum \limits _{i=n-l+1}^n n^{-{\alpha }k} \widetilde{Q}_{l,i}^{\overrightarrow{m}_l, \overrightarrow{n}_l}\Vert _2 \\&\quad \le \sum \limits _{(l,\overrightarrow{m}_l,\overrightarrow{n}_l)\in \Psi _k} C_l^{\overrightarrow{m}_l, \overrightarrow{n}_l} \sum \limits _{i=n-l+1}^n \Vert n^{-{\alpha }k} \widetilde{Q}_{l,i}^{\overrightarrow{m}_l, \overrightarrow{n}_l}\Vert _2 =\mathcal {O}(1), \end{aligned}$$

with \(\Vert \cdot \Vert _2\) denoting the standard \(L^2\) norm, which implies (3.13). \(\square \)

Proof of (3.21)

It is equivalent to prove that, as \(n\rightarrow {\infty }\),

$$\begin{aligned} n^{-2{\alpha }k} Cov (X_{k,n}, X_{k,n+j}) \rightarrow Cov (Z_{k,1}, Z_{k,1+j}). \end{aligned}$$
(6.2)

First consider the nonsymmetric case. Let \({\alpha }_i=(a_{i-1}, d_i, b_i)\), \(i\ge 1\) and \(a_0=0\). By the independence and weak convergence of \({\alpha }_i\) in Assumption (H.1), it is not difficult to deduce that

$$\begin{aligned} n^{-{\alpha }k} ({\alpha }_n, \ldots , {\alpha }_{n+[\frac{k}{2}]}) \overset{d}{\rightarrow } (\widetilde{{\alpha }}_1, \ldots , \widetilde{{\alpha }}_{1+[\frac{k}{2}]}), \end{aligned}$$

where \(\widetilde{{\alpha }}_i\) are independent but with the same distribution as that of \((a+ \eta , d+\zeta , b+ \xi )\). Then, by (4.5) and the continuous mapping theorem ([19, Theorem 3.2.4]),

$$\begin{aligned} n^{-{\alpha }k} X_{k,n} \overset{d}{\rightarrow } F(\widetilde{{\alpha }}_1, \ldots , \widetilde{{\alpha }}_{1+[\frac{k}{2}]}) \end{aligned}$$
(6.3)

with F the continuous function defined as in (4.2).

Similarly,

$$\begin{aligned} n^{-{\alpha }k} X_{k,n+j} \overset{d}{\rightarrow } F(\widetilde{{\alpha }}_{1+j}, \ldots , \widetilde{{\alpha }}_{1+j+[\frac{k}{2}]}). \end{aligned}$$
(6.4)

On the other hand, by (3.3) and Hölder’s inequality

$$\begin{aligned} \sup \limits _{n\ge 1} {\mathbb {E}}(n^{-{\alpha }k} X_{k,n})^4 < {\infty }, \end{aligned}$$
(6.5)

which implies the uniform integrabilities of \(n^{-2{\alpha }k} X_{k,n}X_{k,n+j}\), \(n^{-{\alpha }k} X_{k,n}\) and \(n^{-{\alpha }k} X_{k,n+j}\), \(n\ge 1\).

Therefore, by (6.3)–(6.5), we can apply the Skorohod representation theorem and the uniform integrability to take the limit and obtain (6.2) for the non-symmetric case. (See, e.g., [19, Theorem 3.2.4] for similar arguments for the bounded continuous mapping.)

The symmetric case can be proved analogously. In fact, with the uniform integrability (6.5), we only need to check the weak convergence of \(n^{-{\alpha }k} X_{k,n}\).

In the case that all \(d_i\) are independent of \(a_i(=b_i)\), let \(\beta _i = (d_i, a_i)\), \(i\ge 1\). In this case, \(X_{k,n}= F'(\beta _n,\ldots , \beta _{n+[\frac{k}{2}]})\) with \(F'\) defined as in (4.3). Then, it follows from similar arguments as above that

$$\begin{aligned} n^{-{\alpha }k} X_{k,n} \overset{d}{\rightarrow } F'(\widetilde{\beta _1}, \ldots , \widetilde{\beta }_{1+[\frac{k}{2}]}), \end{aligned}$$
(6.6)

where \(\widetilde{\beta _i}\), \(1\le i\le [\frac{k}{2}]+1\), are independent but with the common distribution as that of \((d+\xi , a+\eta )\).

In the case that \(d_i=f(a_{i-1}, a_i)\), then \(\beta _i = (f(a_{i-1}, a_i), a_i)\), \(X_{k,n} \) is now a continuous function of \(a_{n-1}, \ldots , a_{n+[\frac{k}{2}]}\). As \((a_{n-1},\ldots , a_{n+[\frac{k}{2}]}) \overset{d}{\rightarrow } (\widetilde{{\alpha }_1}, \ldots , \widetilde{{\alpha }}_{[\frac{k}{2}]+2})\), by the continuous mapping theorem, we can obtain the weak convergence of \(n^{-{\alpha }k} X_{k,n}\). The proof is consequently complete. \(\square \)

Proof of (4.4)

Set \(N(k)= |\Psi _k|\), the number of sets in \(\Psi _k\) which is defined as in (2.3). N(k) is finite and depends only on k. Note that

$$\begin{aligned}&{\mathbb {P}}\left( \frac{1}{n} \left| Tr Q_n^k - \sum \limits _{i=1}^n X_i \right| \ge \delta \right) \\&\quad \le \sum \limits _{(l,\overrightarrow{m}_l,\overrightarrow{n}_l)\in \Psi _k} {\mathbb {P}}\left( \left| C_{l}^{\overrightarrow{m}_l,\overrightarrow{n}_l} \sum \limits _{i=n-l+1}^n Q_{l,i}^{\overrightarrow{m}_l,\overrightarrow{n}_l} \right| \ge \frac{n \delta }{ N(k)} \right) . \end{aligned}$$

Then, letting C denote the maximum of \(C_{l}^{\overrightarrow{m}_l,\overrightarrow{n}_l}\) over the finite sets in \(\Psi _k\) and setting \(\delta _{k} = \delta /([\frac{k}{2}] C N(k))\), we deduce that

$$\begin{aligned} {\mathbb {P}}\left( \frac{1}{n} \left| Tr Q_n^k - \sum \limits _{i=1}^n X_{k,i} \right| \ge \delta \right) \le \sum \limits _{(l,\overrightarrow{m}_l,\overrightarrow{n}_l)\in \Psi _k} \sum \limits _{i=n-l+1}^n {\mathbb {P}}\left( \left| Q_{l,i}^{\overrightarrow{m}_l,\overrightarrow{n}_l} \right| \ge n \delta _{k} \right) . \end{aligned}$$

Since by (2.1) and Assumption (H.3), \(\{ |Q _{l,i}^{\overrightarrow{m}_l,\overrightarrow{n}_l}| \}_{i\ge 1}\) is uniformly bounded, which implies that \({\mathbb {P}}(|Q _{l,i}^{\overrightarrow{m}_l,\overrightarrow{n}_l}| \ge n\delta _k) =0\) for n large enough. Hence, by Lemma 1.2.15 in [13],

$$\begin{aligned}&\frac{1}{n} \log \mathbb {P} \left( \frac{1}{n} |Tr Q_n^k - \sum \limits _{i=1}^n X_{k,i}| \ge \delta \right) \nonumber \\&\quad \le \max _{\begin{array}{c} (l,\overrightarrow{m}_l,\overrightarrow{n}_l)\in \Psi _k \\ 1\le j\le [\frac{k}{2}] \end{array}} \frac{1}{n} \log {\mathbb {P}}\left( |Q_{l, n-l+j}^{\overrightarrow{m}_l,\overrightarrow{n}_l}| \ge n \delta _{k} \right) =-{\infty }. \end{aligned}$$
(6.7)

yielding (4.4) as claimed. \(\square \)

Proof of (4.6)

Similarly to the proof of (6.7), we derive that

$$\begin{aligned}&{\lambda }_n \log \mathbb {P} \left( \sqrt{\frac{{\lambda }_n}{n}} |Tr \widetilde{Q_n^k} - \sum \limits _{i=1}^n \widetilde{X}_{k,i}| \ge \delta \right) \\&\quad \le \max _{\begin{array}{c} (l,\overrightarrow{m}_l,\overrightarrow{n}_l)\in \Psi _k \\ 1\le j\le [\frac{k}{2}] \end{array}} {\lambda }_n \log {\mathbb {P}}\left( |\widetilde{Q}_{l, n-l+j}^{\overrightarrow{m}_l,\overrightarrow{n}_l}| \ge \sqrt{\frac{n}{{\lambda }_n}} \delta _{k} \right) \end{aligned}$$

with \(\delta _k\) defined as in the proof of (6.7), which yields (4.6), due to the fact that \(\{Q_{l, i}^{\overrightarrow{m}_l,\overrightarrow{n}_l}\}_{i\ge 1}\) is uniformly bounded and \(n/{\lambda }_n \rightarrow {\infty }\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D. Tridiagonal Random Matrix: Gaussian Fluctuations and Deviations. J Theor Probab 30, 1076–1103 (2017). https://doi.org/10.1007/s10959-016-0683-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-016-0683-7

Keywords

Mathematics Subject Classification (2010)

Navigation