Skip to main content
Log in

Gaussian fluctuations of eigenvalues in log-gas ensemble: Bulk case I

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

We study the central limit theorem of the k-th eigenvalue of a random matrix in the log-gas ensemble with an external potential V = q 2m x 2m. More precisely, let P n (dH) = C n e -nTrV(H) dH be the distribution of n × n Hermitian random matrices, ρV (x)dx the equilibrium measure, where C n is a normalization constant, V (x) = q 2m x 2m with \(q2m = \frac{{\Gamma \left( m \right)\Gamma \left( {\frac{1}{2}} \right)}}{{\Gamma \left( {\frac{{2m + 1}}{2}} \right)}}\), and m ≥ 1. Let x 1 ≤... ≤ x n be the eigenvalues of H. Let k:= k(n) be such that \(\frac{{k\left( n \right)}}{n} \in \left[ {a,1 - a} \right]\) for n large enough, where a ∈ (0, 1/2). Define \(G\left( s \right): = \int_{ - 1}^s {\rho v\left( x \right)dx, - 1 \leqslant s \leqslant 1} ,\) and set t:= G −1(k/n). We prove that, as n → ∞, \(\frac{{xk - t}}{{\frac{{\left( {\sqrt {\log n} } \right)}}{{\sqrt {2{\pi ^2}} n\rho v\left( t \right)}}}} \to N\left( {0,1} \right)\) in distribution. Multi-dimensional central limit theorem is also proved. Our results can be viewed as natural extensions of the bulk central limit theorems for GUE ensemble established by J. Gustavsson in 2005.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deift, P.: Orthogonal polynomials and random matrices: A Riemann–Hilbert approach, Courant Lecture Notes in Mathematics 3, American Mathematical Society, Providence, RI, 1999

    Google Scholar 

  2. Deift, P., Kriecherbauer, T., McLaughlin, K. T.-R., et al.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math., 52 1335–1425 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Deift, P., Kriecherbauer, T., McLaughlin, K. T.-R., et al.: Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math., 52 1491–1552 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deift, P., Kriecherbauer, T., McLaughlin, K. T.-R., et al.: A Riemann–Hilbert approach to asymptotic questions for orthogonal polynomials. J. Comput. Appl. Math., 133, 47–63 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ercolani, N. M., McLaughlin, K. D. T.-R.: Asymptotics of the partition function for random matrices via Riemann–Hilbert techniques and applications to graphical enumeration. Int. Math. Res. Not., 14 755–820 (2003)

    Article  MathSciNet  Google Scholar 

  6. Gustavsson, J.: Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. H. Poincaré–Probabilités et Statistiques, 41 151–178 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kriecherbauer, T., McLaughlin, K. T.-R.: Strong asymptotics of polynomials orthogonal with respect to freud weights. Int. Math. Res. Not., 6 299–333 (1999)

    Article  MathSciNet  Google Scholar 

  8. Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J., 91 151–204 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. O’Rourke, S.: Gaussian fluctuations of eigenvalues in Wigner random matrices. J. Stat. Phys., 138(6), 1045–1066 (2009)

    Article  MathSciNet  Google Scholar 

  10. Soshnikov, A.: Gaussian fluctuations in Airy, Bessel, sine and other determinantal random point fields. J. Statist. Phys., 100 (3/4), 491–522 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Soshnikov, A.: Gaussian limit for determinantal random point fields. Ann. Probab., 30(1), 171–187 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Su, Z. G.: Gaussian fluctuations in complex sample covariance matrices. Electr. J. Probab., 11 1284–1320 (2006)

    MATH  Google Scholar 

  13. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics. Acta Math., 206 127–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tracy, C., Widom, H.: Level spacing distributions and the Airy kernel. Commun. Math. Phys., 159 151–174 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D. Gaussian fluctuations of eigenvalues in log-gas ensemble: Bulk case I. Acta. Math. Sin.-English Ser. 31, 1487–1500 (2015). https://doi.org/10.1007/s10114-015-3685-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-015-3685-y

Keywords

MR(2010) Subject Classification

Navigation