Skip to main content
Log in

On the solvability of a singular boundary-value problem for the equation f(t, x, x′, x″) = 0

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this work, we consider boundary-value problems of the form

$$f(t, x, x', x'') = 0, 0 < t < 1, x(0) = 0, x'(1) = b, b > 0$$

, where the scalar function f(t, x, p, q) may be singular at x = 0. As far as we know, the solvability of the singular boundary-value problems of this form has not been treated yet. Here we try to fill in this gap. Examples illustrating our main result are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Agarwal and D. O’Regan, “Boundary value problems with sign changing nonlinearities for second order singular ordinary differential equations,” Appl. Anal., 81, 1329–1346 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  2. R. P. Agarwal, D. O’Regan, V. Lakshmikantham, and S. Leela, “An upper and lower solution theory for singular Emden-Fowler equations,” Nonlinear Anal.: Real World Appl., 3, 275–291 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  3. R. P. Agarwal, D. O’Regan, and S. Stanek, “Singular Lidstone boundary value problem with given maximal values for solutions,” Nonlinear Anal., 55, 859–881 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  4. R. P. Agarwal, D. O’Regan, and P. J. Y. Wong, Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic, Dordrecht (1998).

    Google Scholar 

  5. L. E. Bobisud and Y. S. Lee, “Existence of monotone or positive solutions of second-order sublinear differential equations,” J. Math. Anal. Appl., 159, 449–468 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  6. P. M. Fitzpatrick, “Existence results for equations involving noncompact perturbation of Fredholm mappings with applications to differential equations,” J. Math. Anal. Appl., 66, 151–177 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  7. W. Ge and J. Mawhin, “Positive solutions to boundary value problems for second order ordinary differential equations with singular nonlinearities,” Results Math., 34, 108–119 (1998).

    MATH  MathSciNet  Google Scholar 

  8. M. K. Grammatikopoulos, P. S. Kelevedjiev, and N. I. Popivanov, “On the solvability of a Neumann boundary value problem,” Nonlinear Anal., To appear.

  9. A. Granas, R. B. Guenther, and J. W. Lee, Nonlinear Boundary Value Problems for Ordinary Differential Equations, Dissnes Math., Warszawa (1985).

    Google Scholar 

  10. Y. Guo, Y. Gao, and G. Zhang, “Existence of positive solutions for singular second order boundary value problems,” Appl. Math. E-Notes, 2, 125–131 (2002).

    MATH  MathSciNet  Google Scholar 

  11. Q. Huang and Y. Li, “Nagumo theorems of nonlinear singular boundary value problems,” Nonlinear Anal., 29, 1365–1372 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  12. D. Jiang, P. Y. H. Pang, and R. P. Agarwal, “Nonresonant singular boundary value problems for the one-dimensional p-Laplacian,” Dynam. Systems Appl., 11, 449–457 (2002).

    MATH  MathSciNet  Google Scholar 

  13. P. Kelevedjiev, “Existence of positive solutions to singular second order boundary value problems,” Nonlinear Anal., 50, 1107–1118 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  14. P. Kelevedjiev and N. Popivanov, “Existence of solutions of boundary value problems for the equation f(t, x, x′, x″) = 0 with fully nonlinear boundary conditions,” Annuaire Univ. Sofia Fac. Math. Inform., 94, 65–77 (2000).

    MathSciNet  Google Scholar 

  15. H. Maagli and S. Masmoudi, “Existence theorems of nonlinear singular boundary value problems,” Nonlinear Anal., 46, 465–473 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  16. Y. Mao and J. Lee, “Two-point boundary value problems for nonlinear differential equations,” Rocky Mauntain J. Math., 26, 1499–1515 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  17. S. A. Marano, “On a boundary value problem for the differential equation f(t, x, x′, x″) = 0,” J. Math. Anal. Appl., 182, 309–319 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  18. S. K. Ntouyas and P. K. Palamides, “The existence of positive solutions of nonlinear singular second-order boundary value problems,” Math. Comput. Modelling, 34, 641–656 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  19. D. O’Regan, Theory of Singular Boundary Value Problems, World Scientific, Singapore (1994).

    MATH  Google Scholar 

  20. P. K. Palamides, “Boundary-value problems for shallow elastic membrane caps,” IMA J. Appl. Math., 67, 281–299 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  21. I. Rachunková, “Singular Dirichlet second-order BVPs with impulses,” J. Differential Equations, 193, 435–459 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  22. I. Rachunková and S. Stanek, “Sturm-Liouville and focal higher order BVPs with singularities in phase variables,” Georgian Math. J., 10, 165–191 (2003).

    MATH  MathSciNet  Google Scholar 

  23. W. V. Petryshyn, “Solvability of various boundary value problems for the equation x″ = f(t, x, x′, x″) − y,” Pacific J. Math., 122, 169–195 (1986).

    MATH  MathSciNet  Google Scholar 

  24. W. V. Petryshyn and P. M. Fitzpatrick, “Galerkin method in the constructive solvability of nonlinear Hammerstein equations with applications to differential equations,” Trans. Amer. Math. Soc., 238, 321–340 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  25. W. V. Petryshyn and Z. S. Yu, “Periodic solutions of nonlinear second-order differential equations which are not solvable for the highest-order derivative,” J. Math. Anal. Appl., 89, 462–488 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  26. W. V. Petryshyn and Z. S. Yu, “Solvability of Neumann BV problems for nonlinear second order ODE’s which need not be solvable for the highest order derivative,” J. Math. Anal. Appl., 91, 244–253 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  27. A. Tineo, “Existence of solutions for a class of boundary value problems for the equation x″ = F(t, x, x′, x″),” Comment. Math. Univ. Carolin., 29, 285–291 (1988).

    MATH  MathSciNet  Google Scholar 

  28. Z. Zhang and J. Wang, “On existence and multiplicity of positive solutions to singular multi-point boundary value problems,” J. Math. Anal. Appl., 295, 502–512 (2004).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Grammatikopoulos.

Additional information

__________

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 16, Differential and Functional Differential Equations. Part 2, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grammatikopoulos, M.K., Kelevedjiev, P.S. & Popivanov, N.I. On the solvability of a singular boundary-value problem for the equation f(t, x, x′, x″) = 0. J Math Sci 149, 1504–1516 (2008). https://doi.org/10.1007/s10958-008-0079-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-0079-z

Keywords

Navigation