Skip to main content
Log in

Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We deal with chance constrained problems with differentiable nonlinear random functions and discrete distribution. We allow nonconvex functions both in the constraints and in the objective. We reformulate the problem as a mixed-integer nonlinear program and relax the integer variables into continuous ones. We approach the relaxed problem as a mathematical problem with complementarity constraints and regularize it by enlarging the set of feasible solutions. For all considered problems, we derive necessary optimality conditions based on Fréchet objects corresponding to strong stationarity. We discuss relations between stationary points and minima. We propose two iterative algorithms for finding a stationary point of the original problem. The first is based on the relaxed reformulation, while the second one employs its regularized version. Under validity of a constraint qualification, we show that the stationary points of the regularized problem converge to a stationary point of the relaxed reformulation and under additional condition it is even a stationary point of the original problem. We conclude the paper by a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://staff.utia.cas.cz/adam/research.html.

References

  1. Charnes, A., Cooper, W.W., Symonds, G.H.: Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manag. Sci. 4(3), 235–263 (1958)

    Article  Google Scholar 

  2. Rockafellar, R., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Finance 26(7), 1443–1471 (2002)

    Article  Google Scholar 

  3. Wozabal, D., Hochreiter, R., Pflug, G.C.: A difference of convex formulation of value-at-risk constrained optimization. Optimization 59(3), 377–400 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. van Ackooij, W., Henrion, R., Möller, A., Zorgati, R.: Joint chance constrained programming for hydro reservoir management. Optim. Eng. 15(2), 509–531 (2014)

    MathSciNet  Google Scholar 

  5. Ehmke, J.F., Campbell, A.M., Urban, T.L.: Ensuring service levels in routing problems with time windows and stochastic travel times. Eur. J. Oper. Res. 240(2), 539–550 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. van Ackooij, W., Sagastizábal, C.: Constrained bundle methods for upper inexact oracles with application to joint chance constrained energy problems. SIAM J. Optim. 24(2), 733–765 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Branda, M.: Optimization approaches to multiplicative tariff of rates estimation in non-life insurance. Asia Pac J. Oper. Res. 31(05), 1450,032 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Klein Haneveld, W., Streutker, M., van der Vlerk, M.: An ALM model for pension funds using integrated chance constraints. Ann. Oper. Res. 177(1), 47–62 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19(2), 674–699 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beraldi, P., Bruni, M.: An exact approach for solving integer problems under probabilistic constraints with random technology matrix. Ann. Oper. Res. 177(1), 127–137 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Luedtke, J., Ahmed, S., Nemhauser, G.: An integer programming approach for linear programs with probabilistic constraints. Math. Program. 122(2), 247–272 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Prékopa, A.: Dual method for the solution of a one-stage stochastic programming problem with random RHS obeying a discrete probability distribution. Zeitschrift für Oper. Res. 34(6), 441–461 (1990)

    MathSciNet  MATH  Google Scholar 

  13. Van Ackooij, W., Berge, V., De Oliveira, W., Sagastizabal, C.: Probabilistic optimization via approximate p-efficient points and bundle methods. Working Paper (2014)

  14. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Book  MATH  Google Scholar 

  15. Kogan, A., Lejeune, M.: Threshold boolean form for joint probabilistic constraints with random technology matrix. Math. Program. 147(1–2), 391–427 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lejeune, M.A.: Pattern-based modeling and solution of probabilistically constrained optimization problems. Oper. Res. 60(6), 1356–1372 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lejeune, M.A., Margot, F.: Solving chance-constrained optimization problems with stochastic quadratic inequalities. Tepper Working Paper E8 (2014)

  18. Prékopa, A.: Probabilistic programming. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming, Handbooks in Operations Research and Management Science, vol. 10, pp. 267–351. Elsevier, Amsterdam (2003)

    Google Scholar 

  19. Dentcheva, D., Martinez, G.: Augmented Lagrangian method for probabilistic optimization. Ann. Oper. Res. 200(1), 109–130 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun, H., Xu, H., Wang, Y.: Asymptotic analysis of sample average approximation for stochastic optimization problems with joint chance constraints via conditional value at risk and difference of convex functions. J. Optim. Theory Appl. 161(1), 257–284 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haneveld, W., van der Vlerk, M.: Integrated chance constraints: reduced forms and an algorithm. Comput. Manag. Sci. 3(4), 245–269 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim. 17(4), 969–996 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hong, L.J., Yang, Y., Zhang, L.: Sequential convex approximations to joint chance constrained programs: A Monte Carlo approach. Oper. Res. 59(3), 617–630 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cheng, J., Houda, M., Lisser, A.: Chance constrained 0–1 quadratic programs using copulas. Optim. Lett. 9(7), 1283–1295 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Henrion, R., Möller, A.: A gradient formula for linear chance constraints under Gaussian distribution. Math. Oper. Res. 37(3), 475–488 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Raike, W.M.: Dissection methods for solutions in chance constrained programming problems under discrete distributions. Manag. Sci. 16(11), 708–715 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  28. Flegel, M.L., Kanzow, C.: On the Guignard constraint qualification for mathematical programs with equilibrium constraints. Optimization 54(6), 517–534 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Burdakov, O., Kanzow, C., Schwartz, A.: On a reformulation of mathematical programs with cardinality constraints. In: Gao, D., Ruan, N., Xing, W. (eds.) Advances in Global Optimization, Springer Proceedings in Mathematics & Statistics, vol. 95, pp. 3–14. Springer International Publishing, Berlin (2015)

    Google Scholar 

  30. Červinka, M., Kanzow, C., Schwartz, A.: Constraint qualifications and optimality conditions for optimization problems with cardinality constraints. Math. Program. (2016). doi:10.1007/s10107-016-0986-6

  31. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11(4), 918–936 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bonami, P., Lodi, A., Tramontani, A., Wiese, S.: On mathematical programming with indicator constraints. Math. Program. 151(1), 191–223 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shan, F., Zhang, L., Xiao, X.: A smoothing function approach to joint chance-constrained programs. J. Optim. Theory Appl. 163(1), 181–199 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ioffe, A.D., Outrata, J.: On metric and calmness qualification conditions in subdifferential calculus. Set Valued Anal. 16(2–3), 199–227 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the Grant Agency of the Czech Republic under Project 15-00735S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukáš Adam.

Additional information

Communicated by René Henrion.

Appendix

Appendix

Together with the index sets defined in (6), we work with the following ones

$$\begin{aligned} I_{-+}(\bar{x},\bar{y}):= & {} {\left\{ i:g(\bar{x},\xi _i) < 0,\ 0<\bar{y}_i<1\right\} },\quad I_{-1}(\bar{x},\bar{y}) := {\left\{ i:g(\bar{x},\xi _i) < 0,\ \bar{y}_i=1\right\} },\\ I_{-0}(\bar{x},\bar{y}):= & {} {\left\{ i:g(\bar{x},\xi _i) < 0,\ \bar{y}_i=0\right\} },\quad I_{+0}(\bar{x},\bar{y}) := {\left\{ i:g(\bar{x},\xi _i) > 0,\ \bar{y}_i=0\right\} }. \end{aligned}$$

Lemma 6.1

Denote Z to be the feasible set of problem (5), fix any \((\bar{x}, \bar{y})\in Z\) with \(\bar{y}\in Y(\bar{x})\). Let Assumption 2.1 be fulfilled at \(\bar{x}\). Then we have \(\hat{N}_Z(\bar{x},\bar{y})=N_1(\bar{x})\times N_2(\bar{y}),\) where

$$\begin{aligned} N_1(\bar{x})&= {\left\{ \sum _{i\in I_0(\bar{x}) }\lambda _i\nabla _x g(\bar{x},\xi _i) + \sum _{j\in J_0(\bar{x})} \mu _j\nabla h_j(\bar{x}): \begin{array}{ll} &{}\lambda _i\ge 0,\ i\in I_{01}(\bar{x},\bar{y})\cup I_{0+}(\bar{x},\bar{y})\\ &{}\lambda _i= 0,\ i\in I_{00}(\bar{x},\bar{y})\\ {} &{}\mu _j\ge 0,\ j\in J_0(\bar{x}) \\ \end{array} \right\} }, \\ N_2(\bar{y})&= {\left\{ \mu p+\gamma : \begin{array}{ll} &{}\mu \le 0\text { if }p^\top y = 1-\varepsilon ,\ \mu = 0\text { if }p^\top y > 1-\varepsilon \\ &{}\gamma _i\le 0,\ i\in I_{00}(\bar{x},\bar{y})\cup I_{-0}(\bar{x},\bar{y})\\ &{}\gamma _i=0,\ i\in I_{-+}(\bar{x},\bar{y})\cup I_{0+}(\bar{x},\bar{y})\\ &{}\gamma _i\ge 0,\ i\in I_{-1}(\bar{x},\bar{y})\cup I_{01}(\bar{x},\bar{y})\\ &{}\gamma _i\in {\mathbb R},\ i\in I_{+0}(\bar{x},\bar{y})\\ \end{array}\right\} }. \end{aligned}$$

Proof

For \(I\subset I_{00}(\bar{x},\bar{y})\) define sets

$$\begin{aligned} Z_I^x:= & {} {\left\{ x:g(x,\xi _i)\le 0,\ i\in I\cup I_{01}(\bar{x},\bar{y}) \cup I_{0+}(\bar{x},\bar{y}),\ h_j(x)\le 0,\ j=1,\dots ,J \right\} } \\ Z_I^y:= & {} {\left\{ y: \begin{array}{ll} &{}p^\top y\ge 1-\varepsilon ,\ \ y_i=0,\ i\in I_{+0}(\bar{x},\bar{y})\cup (I_{00}(\bar{x},\bar{y}){\setminus } I),\\ &{}y_i\in [0,1],\ i\in I\cup I_{-1}(\bar{x},\bar{y})\cup I_{01}(\bar{x},\bar{y})\cup I_{-+}(\bar{x},\bar{y})\cup I_{0+}(\bar{x},\bar{y})\cup I_{-0}(\bar{x},\bar{y}) \end{array}\right\} } \end{aligned}$$

and observe that union of \(Z_I:=Z_I^x\times Z_I^y\) with respect to all \(I\subset I_{00}(\bar{x},\bar{y})\) locally around \((\bar{x},\bar{y})\) coincides with Z, which implies

$$\begin{aligned} \hat{N}_Z(\bar{x},\bar{y}) = \bigcap _{I\subset I_{00}(\bar{x},\bar{y})}\hat{N}_{Z_I}(\bar{x},\bar{y}) = \bigcap _{I\subset I_{00}(\bar{x},\bar{y})}\hat{N}_{Z_I^x}(\bar{x})\times \bigcap _{I\subset I_{00}(\bar{x},\bar{y})}\hat{N}_{Z_I^y}(\bar{y}). \end{aligned}$$

This means that we have

$$\begin{aligned} N_1(\bar{x}) = \bigcap _{I\subset I_{00}(\bar{x},\bar{y})}\hat{N}_{Z_I^x}(\bar{x}) = \hat{N}_{Z_\emptyset ^x}(\bar{x})\quad \text {and}\quad N_2(\bar{y}) = \bigcap _{I\subset I_{00}(\bar{x},\bar{y})}\hat{N}_{Z_I^y}(\bar{y}) = \hat{N}_{Z_{I_{00}(\bar{x}, \bar{y})}^y}(\bar{y}). \end{aligned}$$

The lemma statement them follows from [34, Proposition 3.4] and [27, Theorem 6.14]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adam, L., Branda, M. Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers. J Optim Theory Appl 170, 419–436 (2016). https://doi.org/10.1007/s10957-016-0943-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0943-9

Keywords

Mathematics Subject Classification

Navigation