Skip to main content
Log in

Threshold Boolean form for joint probabilistic constraints with random technology matrix

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

An Erratum to this article was published on 11 December 2015

Abstract

We develop a new modeling and solution method for stochastic programming problems that include a joint probabilistic constraint in which the multirow random technology matrix is discretely distributed. We binarize the probability distribution of the random variables in such a way that we can extract a threshold partially defined Boolean function (pdBf) representing the probabilistic constraint. We then construct a tight threshold Boolean minorant for the pdBf. Any separating structure of the tight threshold Boolean minorant defines sufficient conditions for the satisfaction of the probabilistic constraint and takes the form of a system of linear constraints. We use the separating structure to derive three new deterministic formulations for the studied stochastic problem, and we derive a set of strengthening valid inequalities. A crucial feature of the new integer formulations is that the number of integer variables does not depend on the number of scenarios used to represent uncertainty. The computational study, based on instances of the stochastic capital rationing problem, shows that the mixed-integer linear programming formulations are orders of magnitude faster to solve than the mixed-integer nonlinear programming formulation. The method integrating the valid inequalities in a branch-and-bound algorithm has the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams, W.P., Sherali, H.G.: Mixed-integer bilinear programming problems. Math. Program. 59(1–3), 279–305 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Belotti, P.: Couenne: A User’s Nanual. Technical Report, Lehigh University (2009)

  3. Beraldi, P., Bruni, M.E.: An exact approach for solving integer problems under probabilistic constraints with random technology matrix. Ann. Oper. Res. 177(1), 127–137 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beraldi, P., Bruni, M.E., Violi, A.: Capital rationing problems under uncertainty and risk. Comput. Optim. Appl. 51(3), 1375–1396 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonami, P., Lejeune, M.A.: An exact solution approach for portfolio optimization problems under stochastic and integer constraints. Oper. Res. 57(3), 650–670 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boros, E., Hammer, P.L., Ibaraki, T., Kogan, A.: Logical analysis of numerical data. Math. Program. 79(1–3), 163–190 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Costa, A., Paixao, J.M.P.: An approximate solution approach for a scenario-based capital budgeting model. Comput. Manag. Sci. 7(3), 337–353 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crama, Y., Hammer, P.L.: Boolean Functions: Theory, Algorithms, and Applications. Cambridge Press University, Cambridge, MA (2011)

    Book  Google Scholar 

  9. Genz, A., Bretz, F.: Computation of Multivariate Normal and \(t\) Probabilities. Lecture Notes in Statistics 195. Springer, Dordrecht (2009)

  10. Glover, F.: Improved linear integer programming formulations of nonlinear integer problems. Manag. Sci. 22(4), 455–460 (1975)

    Article  MathSciNet  Google Scholar 

  11. Gurgur, C.Z., Luxhoj, J.T.: Application of chance-constrained programming to capital rationing problems with asymmetrically distributed cash flows and available budgets. Eng. Econ. 48(3), 241–258 (2003)

    Article  Google Scholar 

  12. Henrion, R.: Structural properties of linear probabilistic constraints. Optimization 56(4), 425–440 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Henrion, R., Strugarek, C.: Convexity of chance constraints with independent random variables. Comput. Optim. Appli. 41(2), 263–276 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kataoka, S.: A stochastic programming model. Econometrica 31(1–2), 181–196 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khan, A.: Capital budgeting under capital rationing: an analytical overview of optimization models for government. Int. J. Public Adm. 31(2), 168–194 (2008)

    Article  Google Scholar 

  16. Lejeune, M.A.: A VaR Black–Litterman model for the construction of absolute return fund-of-funds. Quant. Financ. 11(10), 639–664 (2011)

    Article  MathSciNet  Google Scholar 

  17. Lejeune, M.A.: Pattern-based modeling and solution of probabilistically constrained optimization problems. Oper. Res. 60(6), 1356–1372 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lejeune, M.A.: Pattern definition of the \(p\)-efficiency concept. Ann. Oper. Res. 200(1), 23–36 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lorie, J.H., Savage, L.J.: Three problems in rationing capital. J. Bus. 28(2), 229–239 (1955)

    Article  Google Scholar 

  20. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19(2), 674–699 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mukherjee, T., Hingorani, V.: Capital-rationing decisions of fortune 500 firms: a survey. Financ. Pract. Educ. 9(1), 7–15 (1999)

    Google Scholar 

  22. Muroga, S.: Threshold Logic and Its Applications. Wiley, New York, NY (1971)

    MATH  Google Scholar 

  23. Naslund, B.: A model of capital budgeting under risk. J. Bus. 39(2), 257–271 (1966)

    Article  Google Scholar 

  24. Prékopa, A.: Programming under probabilistic constraints with a random technology matrix. Math. Oper. Stat. 5(2), 109–116 (1974)

    MATH  Google Scholar 

  25. Prékopa, A.: Stochastic Programming. Kluwer, Boston, MA (1995)

    Book  Google Scholar 

  26. Prékopa, A.: Probabilistic programming models. Chapter 5. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming: Handbook in Operations Research and Management Science, vol. 10, pp. 267–351. Elsevier, Amsterdam (2003)

  27. Prékopa, A., Yoda, K., Subasi, M.: Uniform quasi-concavity in probabilistic constrained stochastic programming. Oper. Res. Lett. 39(3), 188–192 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ruszczyński, A.: Probabilistic programming with discrete distribution and precedence constrained knapsack polyhedra. Math. Program. 93(2), 195–215 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sarper, H.: Capital rationing under risk: a chance-constrained approach using uniformly distributed cash flows and available budgets. Eng. Econ. 39(1), 49–76 (1993)

    Article  Google Scholar 

  30. Tanner, M.W., Ntaimo, L.: IIS branch-and-cut for joint chance-constrained stochastic programs and application to optimal vaccine allocation. Eur. J. Oper. Res. 207(1), 290–296 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. van Ackooij, W., Henrion, R., Moller, A., Zorgati, R.: On joint probabilistic constraints with Gaussian coefficient matrix. Oper. Res. Lett. 39(2), 99–102 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. van de Panne, C., Popp, W.: Minimum-cost cattle feed under probabilistic constraints. Manag. Sci. 9(3), 405–430 (1963)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the valuable comments and suggestions from two anonymous reviewers and from the associate editor of the Stochastic Programming E-Print Series (SPEPS), who helped improve the paper significantly. M. Lejeune is partially supported by the Army Research Office under Grant # W911NF-09-1-0497.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Lejeune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kogan, A., Lejeune, M.A. Threshold Boolean form for joint probabilistic constraints with random technology matrix. Math. Program. 147, 391–427 (2014). https://doi.org/10.1007/s10107-013-0728-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0728-y

Keywords

Mathematics Subject Classification

Navigation