Skip to main content
Log in

On Mean-Field Partial Information Maximum Principle of Optimal Control for Stochastic Systems with Lévy Processes

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study the mean-field-type partial information stochastic optimal control problem, where the system is governed by a controlled stochastic differential equation, driven by the Teugels martingales associated with some Lévy processes and an independent Brownian motion. We derive necessary and sufficient conditions of the optimal control for these mean-field models in the form of a maximum principle. The control domain is assumed to be convex. As an application, the partial information linear quadratic control problem of the mean-field type is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meng, Q.X., Tang, M.N.: Necessary and sufficient conditions for optimal control of stochastic systems associated with Lévy processes. Sci. China Ser. F Inf. Sci. 52(11), 1982–1992 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Meng, Q.X., Zhang, F.,Tang, M.N.: Maximum principle for backward stochastic systems associated with Lévy processes under partial information, In: Proceedings of the 31 st Chinese control conference, July 25-27, Hefei, China (2012)

  3. Mitsui, K., Tabata, M.: A stochastic linear quadratic problem with Lévy, process and its application to finance. Stoch. Process. Appl. 118, 120–152 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Tang, H., Wu, Z.: Stochastic differential equations and stochastic linear quadratic optimal control problem with Lévy processes. J. Syst. Sci. Complex. 22, 122–136 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Tang, M., Zhang, Q.: Optimal variational principle for backward stochastic control systems associated with Lévy processes, arXiv: 1010.4744v1. (2010)

  6. Nualart, D., Schoutens, W.: BSDE’s and Feynman-Kac formula for Lévy process with application in finance. Bernoulli 7, 761–776 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Zhang, J., Ren, M., Tian, Y., Hou, G., Fang, F.: Constrained stochastic distribution control for nonlinear stochastic systems with non-Gaussian noises. Int. J. Innov. Comput. Inf. Control 9(4), 1759–1767 (2013)

    Google Scholar 

  8. Wang, H.Q., Chen, B., Lin, C.: Adaptive neural tracking control for a class of stochastic nonlinear systems with unknown dead-zone. Int. J. Innov. Comput. Inf. Control 9(8), 3257–3269 (2013)

    Google Scholar 

  9. Baghery, F., Øksendal, B.: A maximum principal for stochastic control with partial information. Stoch. Anal. Appl. 25, 493–514 (2007)

    Article  MathSciNet  Google Scholar 

  10. Kac, M.: Foundations of kinetic theory, In: Proc. 3-rd Berkeley Sympos. Math. Statist. Prob. 3, 171–197 (1956)

  11. McKean, H.P.: A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. USA 56, 1907–1911 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hafayed, M., Abbas, S.: On near-optimal mean-field stochastic singular controls: necessary and sufficient conditions for near-optimality. J. Optim. Theory Appl. 160(3), 778–808 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hafayed, M.: A mean-field necessary and sufficient conditions for optimal singular stochastic control. Commun. Math. Stat. 1, 417–435 (2014)

    Article  MathSciNet  Google Scholar 

  14. Hafayed, M.: A mean-field maximum principle for optimal control of forward–backward stochastic differential equations with Poisson jump processes. Int. J. Dyn. Control 1(4), 300–315 (2013)

    Article  MathSciNet  Google Scholar 

  15. Hafayed, M., Abba, A., Abbas, S.: On mean-field stochastic maximum principle for near-optimal controls for poisson jump diffusion with applications. Int. J. Dyn. Control 2, 262–284 (2014)

    Article  Google Scholar 

  16. Hafayed, M.: Singular mean-field optimal control for forward-backward stochastic systems and applications to finance. Int. J. Dyn. Control 2(4), 542–554 (2014)

    Article  MathSciNet  Google Scholar 

  17. Buckdahn, R., Li, J., Peng, S.: Mean-field backward stochastic differential equations and related partial differential equations. Stoch. Process. Appl. 119, 3133–3154 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Buckdahn, R., Djehiche, B., Li, J.: A general stochastic maximum principle for SDEs of mean-field type. Appl. Math. Optim. 64, 197–216 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shi, J.: Sufficient conditions of optimality for mean-field stochastic control problems. In: 12th International Conference on Control, Automation, Robotics & Vision Guangzhou, P.R. China December 5–7, pp. 747–752 (2012)

  20. Ahmed, N.U.: Nonlinear diffusion governed by McKean–Vlasov equation on Hilbert space and optimal control. SIAM J. Control Optim. 46, 356–378 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lasry, J.M., Lions, P.L.: Mean field games. Jpn. J. Math. 2, 229–260 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Andersson, D., Djehiche, B.: A maximum principle for SDEs of mean-field type. Appl. Math. Optim. 63, 341–356 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Li, J.: Stochastic maximum principle in the mean-field controls. Automatica 48, 366–373 (2012)

    Article  MATH  Google Scholar 

  24. Hafayed, M., Abbas, S.: A general maximum principle for stochastic differential equations of mean-field type with jump processes. Technical report, arXiv: 1301.7327v4. (2013)

  25. Shen, Y., Siu, T.K.: The maximum principle for a jump-diffusion mean-field model and its application to the mean–variance problem. Nonlinear Anal. 86, 58–73 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Shen, Y., Meng, Q., Shi, P.: Maximum principle for mean-field jump-diffusions to stochastic delay differential equations and its applications to finance. Automatica 50, 1565–1579 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  27. Yong, J.: A linear-quadratic optimal control problem for mean-field stochastic differential equations. SIAM J. Control Optim. 51(4), 2809–2838 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wang, G., Zhang, C., Zhang, W.: Stochastic maximum principle for mean-field type optimal control under partial information. IEEE Trans. Automat. Control 59(2), 522–528 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and anonymous referees for their constructive corrections and valuable suggestions that improved the manuscript considerably. The first author was supported by Algerian CNEPRU Project Grant B01420130137, 2014-2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmadjid Abba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafayed, M., Abbas, S. & Abba, A. On Mean-Field Partial Information Maximum Principle of Optimal Control for Stochastic Systems with Lévy Processes. J Optim Theory Appl 167, 1051–1069 (2015). https://doi.org/10.1007/s10957-015-0762-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0762-4

Keywords

Mathematics Subject Classification

Navigation