Skip to main content
Log in

A General Stochastic Maximum Principle for SDEs of Mean-field Type

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We study the optimal control for stochastic differential equations (SDEs) of mean-field type, in which the coefficients depend on the state of the solution process as well as of its expected value. Moreover, the cost functional is also of mean-field type. This makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. For a general action space a Peng’s-type stochastic maximum principle (Peng, S.: SIAM J. Control Optim. 2(4), 966–979, 1990) is derived, specifying the necessary conditions for optimality. This maximum principle differs from the classical one in the sense that here the first order adjoint equation turns out to be a linear mean-field backward SDE, while the second order adjoint equation remains the same as in Peng’s stochastic maximum principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, N.U., Ding, X.: Controlled McKean-Vlasov equations. Commun. Appl. Anal. 5(2), 183–206 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Andersson, D., Djehiche, B.: A maximum principle for SDE’s of mean-field type. Appl. Math. Optim. 63(3), 341–356 (2010)

    Article  Google Scholar 

  3. Bensoussan, A.: Lectures on stochastic control. In: Lecture Notes in Mathematics, vol. 972, pp. 1–62. Springer, Berlin (1981)

    Google Scholar 

  4. Bismut, J.M.: An introductory approach to duality in optimal stochastic control. SIAM Rev. 20, 62–78 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buckdahn, R., Djehiche, B., Li, J., Peng, S.: Mean-field backward stochastic differential equations. A limit approach. Ann. Probab. 37(4), 1524–1565 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buckdahn, R., Li, J., Peng, S.: Mean-field backward stochastic differential equations and related partial differential equations. Stoch. Process. Appl. 119(10), 3133–3154 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cadenillas, A., Karatzas, I.: The stochastic maximum principle for linear, convex optimal control with random coefficients. SIAM J. Control Optim. 33(2), 590–624 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Elliott, R.J.: The optimal control of diffusions. Appl. Math. Optim. 22, 229–240 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kushner, H.J.: On the stochastic maximum principle: fixed time of control. J. Math. Anal. Appl. 11, 78–92 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kushner, H.J.: Necessary conditions for continuous parameter stochastic optimization problems. SIAM J. Control Optim. 10, 550–565 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haussmann, U.G.: A Stochastic Maximum Principle for Optimal Control of Diffusions. Longman Scientific and Technical, Essex (1986)

    MATH  Google Scholar 

  12. Jourdain, B., Méléard, S., Woyczynski, W.: Nonlinear SDEs driven by Lèvy processes and related PDEs. ALEA Lat. Am. J. Probab. Math. Stat. 4, 1–29 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Lasry, J.M., Lions, P.L.: Mean field games. Jpn. J. Math. 2, 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, J.: Stochastic maximum principle in the mean-field controls. Preprint (2009)

  15. Meyer-Brandis, T., Øksendal, B., Zhou, X.Y.: A mean-field stochastic maximum principle via Malliavin calculus. To appear in Stochastics (2010)

  16. Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1–2), 61–74 (1990)

    MathSciNet  Google Scholar 

  17. Peng, S.: A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 2(4), 966–979 (1990)

    Article  Google Scholar 

  18. Revus, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (2004)

    Google Scholar 

  19. Sznitman, A.S.: Topics in propagation of chaos. Ecole de Probabilitès de Saint Flour, XIX-1989. In: Lecture Notes in Math., vol. 1464, pp. 165–251. Springer, Berlin (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Li.

Additional information

R. Buckdahn work has been done in the frame of the Marie Curie ITN Project “Deterministic and Stochastic Controlled Systems and Applications”, call: F97-PEOPLE-2007-1-1-ITN, No: 213841-2.

J. Li work has been supported by the NSF of P.R. China (Nos. 10701050, 11071144), Independent Innovation Foundation of Shandong University, SRF for ROCS (SEM) and National Basic Research Program of China (973 Program) (No. 2007CB814904).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckdahn, R., Djehiche, B. & Li, J. A General Stochastic Maximum Principle for SDEs of Mean-field Type. Appl Math Optim 64, 197–216 (2011). https://doi.org/10.1007/s00245-011-9136-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-011-9136-y

Keywords

Navigation