Skip to main content
Log in

On the Solution of the Linear Complementarity Problem by the Generalized Accelerated Overrelaxation Iterative Method

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In the present work, we determine intervals of convergence for the various parameters involved for what is known as the generalized accelerated overrelaxation iterative method for the solution of the linear complementarity problem. The convergence intervals found constitute sufficient conditions for the generalized accelerated overrelaxation method to converge and are better than what have been known so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. A lower case Latin numeral in a pair of parentheses over a relational operator, as, e.g., “\(\mathop {\le }\limits ^{(ii)}\),” refers to the application and/or implication of the corresponding property of (2).

References

  1. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  2. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Computer Science and Scientific Computing. Academic Press, Boston (1992)

    Google Scholar 

  3. Murty K. G.: Linear Complementarity, Linear and Nonlinear Programming. Internet (Ed.) (1997).

  4. Hildreth, C.: Point estimates of ordinates of concave function. J. Am. Stat. Assoc. 49, 598–619 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  5. Christopherson, D.G.: A new mathematical method for the solution of film lubrication problems. Inst. Mech. Eng. Proc. 146, 126–135 (1941)

    Article  MathSciNet  Google Scholar 

  6. Cryer, C.W.: The method of Christopherson for solving free boundary problems for infinite journal bearings by means of finite differences. Math. Comput. 25, 435–443 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cryer, C.W.: The solution of a quadratic programming problem using systematic over-relaxation. SIAM J. Control 9, 385–392 (1971)

    Article  MathSciNet  Google Scholar 

  8. Rainondi, A.A., Boyd, J.: A solution for the finite journal bearing and its application to analysis and design, III. Trans. Am. Soc. Lubric. Eng. 1, 194–209 (1958)

    Google Scholar 

  9. Fridman, V.M., Chernina, V.S.: An iteration process for the solution of the finite dimensional contact problem. USSR Comput. Math. Math. Phys. 8, 210–214 (1967)

    Article  Google Scholar 

  10. Varga, R.S.: Matrix Iterative Analysis (Revised and Expanded), 2nd edn. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  11. Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, New York (1971)

    MATH  Google Scholar 

  12. Mangasarian, O.L.: Solution of symmetric linear complementarity problems by iterative methods. J. Opt. Theory Appl. 22, 465–485 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ahn, B.H.: Solution of nonsymmetric linear complementarity problems by iterative methods. J. Opt. Theory Appl. 33, 175–185 (1981)

    Article  MATH  Google Scholar 

  14. Pang, J.S.: Necessary and sufficient conditions for the convergence of iterative methods for the linear complementarity problem. J. Opt. Theory Appl. 42, 1–17 (1984)

    Article  MATH  Google Scholar 

  15. Pantazopoulos K.: Numerical methods and software for the pricing of American financial derivatives. PhD Thesis, Department of Computer Sciences, Purdue University, West Lafayette (1998).

  16. Koulisianis, M.D., Papatheodorou, T.S.: Improving projected successive overrelaxation method for linear complementarity problems. Appl. Numer. Math. 45, 29–40 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yuan, D., Song, Y.: Modified AOR methods for linear complementarity problem. Appl. Math. Comput. 140, 53–67 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lj, Cvetković, Rapajić, S.: How to improve MAOR method convergence area for linear complementarity problems. Appl. Math. Comput. 162, 577–584 (2005)

    Article  MathSciNet  Google Scholar 

  19. Li, Y., Dai, P.: Generalized AOR for linear complementarity problem. Appl. Math. Comput. 188, 7–18 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Saberi Najafi, H., Edalatpanah, S.A.: On the convergence regions of generalized accelerated overrelaxation method for linear complementarity problems. J. Optim. Theory Appl. 156, 859–866 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Saberi Najafi, H., Edalatpanah, S.A.: Modification of iterative methods for solving linear complementarity problems. Eng. Comput. 30, 910–923 (2013)

    Article  Google Scholar 

  22. Herceg, D., Lj, Cvetković: On an iterative method for a system of equations. Zb. Rad. Prir.- Mat. Fac. Ser. Mat. 20, 11–15 (1990)

    MATH  Google Scholar 

  23. Saberi Najafi, H., Edalatpanah, S.A.: Iterative methods with analytical preconditioning technique to linear complementarity problems. RAIRO-Oper. Res. 47, 59–71 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. van Bokhoven, W.M.G.: A class of linear complementarity problems is solvable in polynomial time. Department of Electrical Engineerig, University of Technology, Eindhoven, Netherlands (1980)

  25. Kappel, N.W., Watson, L.T.: Iterative algorithms for the linear complementarity problems. Int. J. Comput. Math. 19, 273–297 (1986)

    Article  MATH  Google Scholar 

  26. Hadjidimos, A., Tzoumas, M.: Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem. Linear Algebra Appl. 431, 197–210 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129–143 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zhang, L.-L.: Two-step modulus based matrix splitting iteration method for linear complementarity problems. Numer. Algor. 57, 83–99 (2011)

    Article  MATH  Google Scholar 

  30. Hadjidimos, A., Lapidakis, M., Tzoumas, M.: On iterative solution for the linear complementarity problem with an \(H_+-\)matrix. SIAM J. Matrix Anal. 33, 97–110 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20, 425–439 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer. Algorithms 62, 59–77 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  33. Cvetković Lj., Kostić V.: A note on the convergence of the MSMAOR method for linear complementarity problems. Numer. Linear Algebra Appl. (2013) (/DOIurl:10.1002/nla.1896).

  34. Cvetković Lj., Hadjidimos A., Kostić V.: On the choice of parameters in MAOR type splitting methods for the linear complementarity problem. Numer. Algor. (2014) (/DOIurl: 10.1007/s11075-014-9824-1).

  35. Hadjidimos, A.: Accelerated overrelaxation method. Math. Comput. 32, 149–157 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  36. Hadjidimos, A.: Successive overrelaxation (SOR) and related methods. J. Comput. Appl. Math. 123, 177–199 (2000) (Also, in “Numerical Analysis 2000, Vol. 3, Linear Algebra—Linear Systems and Eigenvalues”. van Dooren, P. M., Hadjidimos, A., van der Vorst, H. A. (Eds), North Holland, Amsterdam (2000)).

  37. Ortega, J.M., Rheinboldt, W.: Iterative Solution of Nonlinear Equations in Several Space Variables. Classics in Applied Mathematics. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  38. Alanelli, M., Hadjidimos, A.: A new iterative criterion for \(H-\)matrices. SIAM J. Matrix Anal. Appl. 29, 160–176 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  39. Bru Garcia, R., Giménez, I., Hadjidimos, A.: Is \(A \in {C}^{n, n}\) a general \(H-\)matrix? Linear Algebra Appl. 436, 364–380 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are most grateful to the anonymous referees for their very detailed and constructive criticism on a previous version of this work which greatly improved the quality of the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos Hadjidimos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadjidimos, A., Tzoumas, M. On the Solution of the Linear Complementarity Problem by the Generalized Accelerated Overrelaxation Iterative Method. J Optim Theory Appl 165, 545–562 (2015). https://doi.org/10.1007/s10957-014-0589-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0589-4

Keywords

Mathematics Subject Classification

Navigation