Skip to main content
Log in

The DuBois–Reymond Fundamental Lemma of the Fractional Calculus of Variations and an Euler–Lagrange Equation Involving Only Derivatives of Caputo

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Derivatives and integrals of noninteger order were introduced more than three centuries ago but only recently gained more attention due to their application on nonlocal phenomena. In this context, the Caputo derivatives are the most popular approach to fractional calculus among physicists, since differential equations involving Caputo derivatives require regular boundary conditions. Motivated by several applications in physics and other sciences, the fractional calculus of variations is currently in fast development. However, all current formulations for the fractional variational calculus fail to give an Euler–Lagrange equation with only Caputo derivatives. In this work, we propose a new approach to the fractional calculus of variations by generalizing the DuBois–Reymond lemma and showing how Euler–Lagrange equations involving only Caputo derivatives can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  2. Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A.: Advances in Fractional Calculus. Springer, Dordrecht (2007)

    Book  MATH  Google Scholar 

  3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  4. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, River Edge (2000)

    Book  MATH  Google Scholar 

  5. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Redding (2006)

    Google Scholar 

  6. Herrmann, R.: Fractional Calculus: an Introduction for Physicists. World Scientific, Singapore (2011)

    Book  MATH  Google Scholar 

  7. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161–R208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Klages, R., Radons, G., Sokolov, I.M.: Anomalous Transport: Foundations and Applications. VCH, Weinheim (2007)

    Google Scholar 

  9. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002), 7 pp.

    Article  MathSciNet  Google Scholar 

  10. Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45, 3339–3352 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iomin, A.: Accelerator dynamics of a fractional kicked rotor. Phys. Rev. E 75, 037201 (2007), 4 pp.

    Article  Google Scholar 

  12. Tarasov, V.E.: Fractional Heisenberg equation. Phys. Lett. A 372, 2984–2988 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ketov, S.V., Prager Ya, S.: On the “square root” of the Dirac equation within extended supersymmetry. Acta Phys. Pol. B 21, 463–467 (1990)

    Google Scholar 

  14. Závada, P.: Relativistic wave equations with fractional derivatives and pseudodifferential operators. J. Appl. Math. 2, 163–197 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Muslih, S.I., Agrawal, O.P., Baleanu, D.: A fractional Dirac equation and its solution. J. Phys. A 43, 055203 (2010), 13 pp.

    Article  MathSciNet  Google Scholar 

  16. Tarasov, V.E.: Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 323, 2756–2778 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Herrmann, R.: Gauge invariance in fractional field theories. Phys. Lett. A 372, 5515–5522 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lazo, M.J.: Gauge invariant fractional electromagnetic fields. Phys. Lett. A 375, 3541–3546 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Munkhammar, J.: Riemann–Liouville fractional Einstein field equations (2010). arXiv:1003.4981 [physics.gen-ph]

  20. Nigmatullin, R.R., Le Mehaute, A.: Is there geometrical/physical meaning of the fractional integral with complex exponent? J. Non-Cryst. Solids 351, 2888–2899 (2005)

    Article  Google Scholar 

  21. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, 367–386 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Geophys. J. R. Astron. Soc. 13, 529–539 (1967)

    Article  Google Scholar 

  23. Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento 1, 161–198 (1971)

    Article  Google Scholar 

  24. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  25. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, part B, 3581–3592 (1997)

    Article  MathSciNet  Google Scholar 

  26. Bauer, P.S.: Dissipative dynamical systems: I. Proc. Natl. Acad. Sci. 17, 311–314 (1931)

    Article  Google Scholar 

  27. Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Baleanu, D., Agrawal, Om.P.: Fractional Hamilton formalism within Caputo’s derivative. Czechoslov. J. Phys. 56, 1087–1092 (2006)

    Article  MathSciNet  Google Scholar 

  29. Cresson, J.: Fractional embedding of differential operators and Lagrangian systems. J. Math. Phys. 48, 033504 (2007), 34 pp.

    Article  MathSciNet  Google Scholar 

  30. Almeida, R., Pooseh, S., Torres, D.F.M.: Fractional variational problems depending on indefinite integrals. Nonlinear Anal. 75, 1009–1025 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, 1490–1500 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Odzijewicz, T., Malinowska, A.B., Torres, D.F.M.: Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal. 75, 1507–1515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Odzijewicz, T., Malinowska, A.B., Torres, D.F.M.: Generalized fractional calculus with applications to the calculus of variations. Comput. Math. Appl. (2012, in press). doi:10.1016/j.camwa.2012.01.073

  34. Odzijewicz, T., Malinowska, A.B., Torres, D.F.M.: Fractional calculus of variations in terms of a generalized fractional integral with applications to physics. Abstr. Appl. Anal. 2012, 871912 (2012), 24 pp.

    Article  MathSciNet  Google Scholar 

  35. Cresson, J., Inizan, P.: Irreversibility, least action principle and causality (2009). arXiv:0812.3529 [math-ph]

  36. Dreisigmeyer, D.W., Young, P.M.: Nonconservative Lagrangian mechanics: a generalized function approach. J. Phys. A 36, 8297–8310 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Malinowska, A.B., Torres, D.F.M.: Introduction to the Fractional Calculus of Variations. Imperial College Press/World Scientific, London/Singapore (2012)

    MATH  Google Scholar 

  38. Almeida, R., Malinowska, A.B., Torres, D.F.M.: Fractional Euler–Lagrange differential equations via Caputo derivatives. In: Baleanu, D., Tenreiro Machado, J.A., Luo, A.C.J. (eds.) Fractional Dynamics and Control, pp. 109–118. Springer, New York (2012)

    Chapter  Google Scholar 

  39. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  40. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  41. Kolwankar, K.M., Gangal, A.D.: Fractional differentiability of nowhere differentiable functions and dimensions. Chaos 6, 505–513 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. Jumarie, G.: From self-similarity to fractional derivative of non-differentiable functions via Mittag–Leffler function. Appl. Math. Sci. 2, 1949–1962 (2008)

    MathSciNet  MATH  Google Scholar 

  43. Wang, X.: Fractional geometric calculus: toward a unified mathematical language for physics and engineering. In: Chen, W., Sun, H.-G., Baleanu, D. (eds.) Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications (FDA’12), Hohai University, Nanjing (2012). Paper #034

    Google Scholar 

  44. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Prentice Hall, Englewood Cliffs (1963)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to two referees for their valuable comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delfim F. M. Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazo, M.J., Torres, D.F.M. The DuBois–Reymond Fundamental Lemma of the Fractional Calculus of Variations and an Euler–Lagrange Equation Involving Only Derivatives of Caputo. J Optim Theory Appl 156, 56–67 (2013). https://doi.org/10.1007/s10957-012-0203-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0203-6

Keywords

Navigation