Skip to main content
Log in

On Regularity for Constrained Extremum Problems. Part 2: Necessary Optimality Conditions

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A particular theorem for linear separation between two sets is applied in the image space associated with a constrained extremum problem. In this space, the two sets are a convex cone, depending on the constraints (equalities and inequalities) of the given problem and the homogenization of its image. It is proved that the particular linear separation is equivalent to the existence of Lagrangian multipliers with a positive multiplier associated with the objective function (i.e., a necessary optimality condition). A comparison with the constraint qualifications and the regularity conditions existing in the literature is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moldovan, A., Pellegrini, L.: On regularity for constrained extremum problems. Part 1: sufficient optimality conditions. J. Optim. Theory Appl. (2009). doi: 10.1007/s10957-009-9518-3

  2. Moldovan, A., Pellegrini, L.: On separation between a set and a convex cone. J. Math. Anal. Appl. (2009, submitted)

  3. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983). Reprint, SIAM Classics in Applied Mathematics, vol. 5, Philadelphia (1994)

    MATH  Google Scholar 

  4. Ioffe, A.D.: Regular points of Lipschitz functions. Trans. Am. Math. Soc. 251, 533–548 (1994)

    Google Scholar 

  5. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Springer, Berlin (1993)

    Google Scholar 

  6. Guignard, M.: Generalized Kuhn-Tucker conditions for mathematical programming problems in a Banach space. SIAM J. Control 7, 232–241 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  7. Giannessi, F.: Semidifferentiable functions and necessary optimality conditions. J. Optim. Theory Appl. 60, 191–214 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dien, P.H., Mastroeni, G., Pappalardo, M., Quang, P.H.: Regularity conditions for constrained extremum problems via image space. J. Optim. Theory Appl. 80, 19–37 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Abadie, J.M.: On the Kuhn-Tucker theorem. In: Abadie, J. (ed.) Nonlinear Programming, pp. 19–36. North-Holland, Amsterdam (1967)

    Google Scholar 

  10. Bazaara, M.S., Shetty, C.M.: Foundations of Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 122. Springer, Berlin (1976)

    Google Scholar 

  11. Mangasarian, O.L.: Nonlinear Programming. McGraw-Hill, New York (1969). Reprint, SIAM Classics in Applied Mathematics, vol. 10, Philadelphia (1994)

    MATH  Google Scholar 

  12. Slater, M.: Lagrange multipliers revisited: a contribution to nonlinear programming. Cowles Commission Discussion Paper, Mathematics 403 (1950)

  13. Mangasarian, O.L., Fromowitz, S.: The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17, 37–47 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  14. Tiba, D., Zalinescu, C.: On the necessity of some constraint qualifications conditions in convex programming. J. Convex Anal. 11, 95–110 (2004)

    MATH  MathSciNet  Google Scholar 

  15. Li, W.: Abadie’s constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7, 966–978 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Madani, K., Mastroeni, G., Moldovan, A.: Constrained extremum problems with infinite dimensional image: selection and necessary conditions. J. Optim. Theory Appl. 135, 37–53 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Madani, K., Mastroeni, G., Moldovan, A.: Constrained extremum problems with infinite dimensional image: selection and saddle point. J. Glob. Optim. 30, 197–208 (2008)

    Article  MathSciNet  Google Scholar 

  18. Bot, R.I., Csetnek, R., Moldovan, A.: Revisiting some duality theorems via the quasirelative interior in convex optimization. J. Optim. Theory Appl. 139(1) (2008)

  19. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    MATH  Google Scholar 

  20. Giannessi, F., Mastroeni, G., Pellegrini, L.: On the theory of vector optimization and variational inequalities. Image space analysis and separation. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria. Mathematical Theories. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  21. Chinaie, M., Zafarani, J.: Image space analysis and scalarization of set-valued optimization. J. Optim. Theory Appl. (2009, to appear)

  22. Guu, S.-M., Huang, N.-J., Li, J.: Scalarization approaches for set-valued vector optimization problems and vector variational inequalities. J. Math. Anal. Appl. (2009, to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pellegrini.

Additional information

Communicated by F. Giannessi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moldovan, A., Pellegrini, L. On Regularity for Constrained Extremum Problems. Part 2: Necessary Optimality Conditions. J Optim Theory Appl 142, 165–183 (2009). https://doi.org/10.1007/s10957-009-9521-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-009-9521-8

Keywords

Navigation