Skip to main content
Log in

On Polyhedral Projection and Parametric Programming

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper brings together two fundamental topics: polyhedral projection and parametric linear programming. First, it is shown that, given a parametric linear program (PLP), a polyhedron exists whose projection provides the solution to the PLP. Second, the converse is tackled and it is shown how to formulate a PLP whose solution is the projection of an appropriately defined polyhedron described as the intersection of a finite number of halfspaces. The input to one operation can be converted to an input of the other operation and the resulting output can be converted back to the desired form in polynomial time—this implies that algorithms for computing projections or methods for solving parametric linear programs can be applied to either problem class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blanchini, F.: Set invariance in control—a survey. Automatica 35(11), 1747–1768 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Vidal, R., Schaffert, S., Lygeros, J., Sastry, S.: Controlled invariance of discrete time systems. In: Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, vol. 1790, pp. 437–450. Springer, Berlin (2000)

    Chapter  Google Scholar 

  3. Ziegler, G.M.: Lectures on Polytopes. Springer, New York (1995)

    MATH  Google Scholar 

  4. Borrelli, F., Bemporad, A., Morari, M.: A geometric algorithm for multi-parametric linear programming. J. Optim. Theory Appl. 118(3), 515–540 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bemporad, A., Borrelli, F., Morari, M.: Model predictive control based on linear programming—the explicit solution. IEEE Trans. Autom. Control 47(12), 1974–1985 (2002)

    Article  MathSciNet  Google Scholar 

  6. Gal, T.: Postoptimal Analyses, Parametric Programming and Related Topics, 2nd edn. de Gruyter, Berlin (1995)

    Google Scholar 

  7. Schechter, M.: Polyhedral functions and multiparametric linear programming. J. Optim. Theory Appl. 53(2), 269–280 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Baotić, M.: An efficient algorithm for multi-parametric quadratic programming. Technical report, ETH Zürich, Institut für Automatik, Physikstrasse 3, CH-8092, Switzerland (2002)

  9. Grieder, P., Borrelli, F., Torrisi, F., Morari, M.: Computation of the constrained infinite time linear quadratic regulator. Automatica 40, 701–708 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Tøndel, P., Johansen, T.A., Bemporad, A.: An algorithm for multi-parametric quadratic programming and explicit MPC solutions. In: Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA (2001)

  11. Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: Lexicographic perturbation for multiparametric linear programming with applications to control. Automatica 43(10), 1608–1816 (2007)

    Article  Google Scholar 

  12. Jaffar, J., Maher, M.J., Stuckey, P.J., Yap, R.H.C.: Projecting clp(ℛ) constraints. New Gener. Comput. 11(3,4), 449–469 (1993)

    Article  MATH  Google Scholar 

  13. Ponce, J., Sullivan, S., Sudsang, A., Boissonnat, J., Merlet, J.: On computing four-finger equilibrium and force-closure grasps of polyhedral objects. Int. J. Robot. Res. 16(1), 11–35 (1997)

    Article  Google Scholar 

  14. Černikov, S.N.: Contraction of finite systems of linear inequalities. Dokl. Akad. Nauk SSSR 152(5), 1075–1078 (1963) (in Russian). (English translation in Soc. Math. Dokl. 4(5), 1520–1524 (1963))

    MathSciNet  Google Scholar 

  15. Balas, E., Pulleybank, W.R.: The perfectly matchable subgraph polytope of a bipartite graph. Networks 13, 495–516 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M., Euler, R., Manoussakis, I. (eds.) Combinatorics and Computer Science. Lecture Notes in Computer Science, vol. 1120, pp. 91–111. Springer, Berlin (1996). Postscript file available from ftp://ftp.ifor.math.ethz.ch/pub/fukuda/reports/ddrev960315.ps.gz

    Google Scholar 

  17. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geom. 8, 295–313 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65, 21–46 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Amenta, N., Ziegler, G.M.: Shadows and slices of polytopes. In: Proceedings of the 12th Annual Symposium on Computational Geometry, pp. 10–19. ACM Press, New York (1996)

    Google Scholar 

  20. Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: Equality set projection: a new algorithm for the projection of polytopes in halfspace representation. Technical Report CUED/F-INFENG/TR. 463, Department of Engineering, University of Cambridge, 2004. http://www-control.eng.cam.ac.uk/~cnj22/docs/resp_mar_04_15.pdf

  21. Klee, V., Kleinschmidt, P.: Geometry of the Gass-Saaty parametric cost LP algorithm. Discrete Comput. Geom. 5, 13–26 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Murty, K.G.: Linear Programming. Wiley, New York (1983)

    MATH  Google Scholar 

  23. Tyrrell Rockafellar, R., Wets, R.J.-B.: Variational Analysis. A series of Comprehensive Studies in Mathematics, vol. 317. Springer, Berlin (1998)

    MATH  Google Scholar 

  24. Borrelli, F.: Constrained Optimal Control Of Linear And Hybrid Systems. Lecture Notes in Control and Information Sciences, vol. 290. Springer, Berlin (2003)

    MATH  Google Scholar 

  25. Spjøtvold, J., Tøndel, P., Johansen, T.A.: A method for obtaining continuous solutions to multiparametric linear programs. In: Proceedings of the 16th IFAC World Congress, Prague (2005)

  26. Jones, C.N.: Polyhedral Tools for Control. PhD thesis, University of Cambridge, July 2005

  27. Cheng, M.C.: General criteria for redundant and nonredundant linear inequalities. J. Optim. Theory Appl. 53(1), 37–42 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  28. Padberg, M.: Linear Optimization and Extensions. Algorithms and Combinatorics. Springer, Berlin (1999)

    MATH  Google Scholar 

  29. Bemporad, A., Borrelli, F., Morari, M.: Min-max control of constrained uncertain discrete-time linear systems. IEEE Trans. Autom. Control 48(9), 1600–1606 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. N. Jones.

Additional information

Communicated by D.Q. Mayne.

E.C. Kerrigan’s research was supported in part by the Royal Academy of Engineering, UK.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, C.N., Kerrigan, E.C. & Maciejowski, J.M. On Polyhedral Projection and Parametric Programming. J Optim Theory Appl 138, 207–220 (2008). https://doi.org/10.1007/s10957-008-9384-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-008-9384-4

Keywords

Navigation