Skip to main content

Controlled Invariance of Discrete Time Systems

  • Conference paper
  • First Online:
Hybrid Systems: Computation and Control (HSCC 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1790))

Included in the following conference series:

Abstract

An algorithm for computing the maximal controlled invariant set and the least restrictive controller for discrete time systems is proposed. We show how the algorithm can be encoded using quantifier elimination, which leads to a semi-decidability result for definable systems. For discrete time linear systems with all sets specified by linear inequalities, a more efficient implementation is proposed using linear programming and Fourier elimination. If in addition the system is in controllable canonical form, the input is scalar and unbounded, the disturbance is scalar and bounded and the initial set is a rectangle, then the problem is decidable.

Research supported by ONR under grant N00014-97-1-0946, by DARPA under contract F33615-98-C-3614, and by ARO under grant MURI DAAH04-96-1-0341.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.S. Arnon, G.E. Collins, and S. McCallum. Cylindrical algebraic decomposition I: the basic algorithm. SIAM Journal on Computing, 13(4):865–877, 1984.

    Article  MathSciNet  Google Scholar 

  2. T. BaÅŸar and G. J. Olsder. Dynamic Non-cooperative Game Theory. Academic Press, 2nd edition, 1995.

    Google Scholar 

  3. A. Bensoussan and J.L. Menaldi. Hybrid control and dynamic programming. Dynamics of Continuous, Discrete and Impulsive Systems, (3):395–442, 1997.

    MATH  MathSciNet  Google Scholar 

  4. M.S. Branicky, V.S. Borkar, and S.K. Mitter. A unified framework for hybrid control: Model and optimal control theory. IEEE Transactions on Automatic Control, 43(1):31–45, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  5. P.E. Caines and Y.J. Wei. Hierarchical hybrid control systems: A lattice theoretic formulation. IEEE Transactions on Automatic Control, 43(4):501–508, April 1998.

    Article  MATH  MathSciNet  Google Scholar 

  6. R.N. Cernikov. The solution to linear programming problems by elimination of unknowns. Soviet Mathematics Doklady, 2:1099–1103, 1961.

    Google Scholar 

  7. V. Chandru. Variable elimination in linear constraints. The Computer Journal, 36(5):463–472, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  8. T. Dang and O. Maler. Reachability analysis via face lifting. In Hybrid Systems: Computation and Control, vol. 1386 of LNCS, pp. 96–109. Springer Verlag, 1998.

    Google Scholar 

  9. A. Dolzmann and T. Sturm. REDLOG: Computer algebra meets computer logic. ACM SIGSAM Bulletin, 31(2):2–9, 1997.

    Article  MathSciNet  Google Scholar 

  10. L.B.J. Fourier. Analyse des travaux de l’Academie Royale des Sciences, pendant l’annee 1824, Partie matematique. Histoire de l’Academie Royale des Sciences de l’Institut de France 7, 1827.

    Google Scholar 

  11. G. Grammel. Maximum principle for a hybrid system via singular perturbations. SIAM Journal of Control and Optimization, 37(4):1162–1175, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  12. M.R. Greenstreet and I. Mitchell. Integrating projections. In Hybrid Systems: Computation and Control, vol. 1386 of LNCS, pp. 159–174. Springer Verlag, 1998.

    Google Scholar 

  13. M. Heymann, F. Lin, and G. Meyer. Control synthesis for a class of hybrid systems subject to configuration-based safety constraints. In Hybrid and Real Time Systems, vol. 1201 of LNCS, pp. 376–391. Springer Verlag, 1997.

    Chapter  Google Scholar 

  14. C. Lassez and J.-L. Lassez. Quantifier elimination for conjunctions of linear constraints via a convex hull algorithm. In Symbolic and Numeric Computation for Artificial Intelligence, pages 103–122. Academic Press, 1992.

    Google Scholar 

  15. J. Lewin. Differential Games. Springer-Verlag, 1994.

    Google Scholar 

  16. J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reachability specifications for hybrid systems. Automatica, pages 349–370, March 1999.

    Google Scholar 

  17. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed systems. In Theoretical Aspects of Computer Science, vol. 900 of LNCS, pp. 229–242. Springer Verlag, 1995.

    Google Scholar 

  18. A. Nerode and W. Kohn. Multiple agent hybrid control architecture. In Hybrid Systems, vol. 736 of LNCS, pp. 297–316. Springer Verlag, New York, 1993.

    Google Scholar 

  19. G. Pappas, G. Lafferriere, and S. Sastry. Hierarchically consistent control systems. In IEEE Conference on Decision and Control, pages 4336–4341, December 1998.

    Google Scholar 

  20. B. Piccoli. Necessary conditions for hybrid optimization. In IEEE Conference on. Decision and Control, pages 410–415, December 7–10 1999.

    Google Scholar 

  21. P. J. G. Ramadge and W. M. Wonham. The control of discrete event systems. Proceedings of the IEEE, Vol.77(1):81–98, 1989.

    Article  Google Scholar 

  22. A. Seidenberg. A new decision method for elementary algebra. Annals of Mathematics, 60:387–374, 1954.

    Article  MathSciNet  Google Scholar 

  23. H.J. Sussmann. A maximum principle for hybrid optimal control problems. In IEEE Conference on Decision and Control, pages 425–430, December 7–10 1999.

    Google Scholar 

  24. A. Tarski. A decision method for elementary algebra and geometry. University of California Press, 1951.

    Google Scholar 

  25. W. Thomas. On the synthesis of strategies in infinite games. In Ernst W. Mayr and Claude Puech, editors, Proceedings of STACS 95, vol. 900 of LNCS, pp. 1–13. Springer Verlag, Munich, 1995.

    Google Scholar 

  26. C. Tomlin, J. Lygeros, and S. Sastry. Computing controllers for nonlinear hybrid systems. In Hybrid Systems: Computation and Control, vol. 1569 of LNCS, pp. 238–255. Springer Verlag, 1999.

    Chapter  Google Scholar 

  27. R. Vidal, S. Schaffert, J. Lygeros, and S. Sastry. Controlled invariance of discrete time systems. Technical Report UCB/ERL M99/65, Electronics Research Laboratory, University of California, Berkeley, 1999.

    Google Scholar 

  28. H. Wong-Toi. The synthesis of controllers for linear hybrid automata. In IEEE Conference on Decision and Control, pages 4607–4613, December 10–12 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vidal, R., Schaffert, S., Lygeros, J., Sastry, S. (2000). Controlled Invariance of Discrete Time Systems. In: Lynch, N., Krogh, B.H. (eds) Hybrid Systems: Computation and Control. HSCC 2000. Lecture Notes in Computer Science, vol 1790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46430-1_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-46430-1_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67259-3

  • Online ISBN: 978-3-540-46430-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics