Skip to main content

Advertisement

Log in

Cognitive Research and Elementary Science Instruction: From the Laboratory, to the Classroom, and Back

  • Published:
Journal of Science Education and Technology Aims and scope Submit manuscript

Abstract

Can cognitive research generate usable knowledge for elementary science instruction? Can issues raised by classroom practice drive the agenda of laboratory cognitive research? Answering yes to both questions, we advocate building a reciprocal interface between basic and applied research. We discuss five studies of the teaching, learning, and transfer of the “Control of Variables Strategy” in elementary school science. Beginning with investigations motivated by basic theoretical questions, we situate subsequent inquiries within authentic educational debates—contrasting hands-on manipulation of physical and virtual materials, evaluating direct instruction and discovery learning, replicating training methods in classroom, and narrowing science achievement gaps. We urge research programs to integrate basic research in “pure” laboratories with field work in “messy” classrooms. Finally, we suggest that those engaged in discussions about implications and applications of educational research focus on clearly defined instructional methods and procedures, rather than vague labels and outmoded “-isms.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelson, R. (2004). Instruction versus exploration in science learning. Monitor on Psychology 35: 34–36.

    Google Scholar 

  • Alberts, B., and Wheeler, G. (2004, March 4). Letter to California state board from national academy of sciences. Retrieved on April 7, 2004 from http://science.nsta.org/nstaexpress/letterto-calffromgerry.htm.

  • American Association for the Advancement of Science. (1993). Benchmarks for Science Literacy, Oxford University Press, New York.

    Google Scholar 

  • Amsel, E., and Brock, S. (1996). Developmental changes in children’s evaluation of evidence. Cognitive Development 11: 523–550.

    Article  Google Scholar 

  • Anderson, J. R., Corbett, A. T., Koedinger, K. R., and Pelletier, R. (1995). Cognitive tutors: Lessons learned. The Journal of the Learning Sciences 4: 167–207.

    Article  Google Scholar 

  • Atkinson, R. (1968). Computerized instruction and the learning process. American Psychologist 23: 225–239.

    CAS  PubMed  Google Scholar 

  • Barnett, S. M., and Ceci, S. J. (2002). When and Where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin 128: 612–637.

    Article  PubMed  Google Scholar 

  • Begley, S. (2004, December 10). The best ways to make schoolchildren learn? We just don’t know. The Wall Street Journal Online, p. B1. Retrieved December 10, 2004 from http://online. wsj.com/article/0,SB110263537231796249,00.html.

  • Bernard, R. M., Abrami, P., Lou, Y., Borokhovski, E., Wade, A., Wozney, L., Wallet, P. A., Fiset, M., and Huang, B. (2004). How does distance education compare to classroom instruction? A meta-analysis of the empirical literature. Review of Educational Research 74: 379–439.

    Google Scholar 

  • Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. Journal of Learning Sciences 2: 141–178.

    Article  Google Scholar 

  • Brown, A. L., and Campione, J. C. (1994). Guided discovery in a community of learners. In McGilly, K. (Ed.), Classroom Lessons: Integrating Cognitive Theory and Classroom Practice, MIT Press, Cambridge, MA, pp. 229–272.

    Google Scholar 

  • Bullock, M., Ziegler, A., and Martin, S. (1992). Scientific thinking. In Weinert, F. E., and Schneider, W. (Eds.), LOGIC Report 9: Assessment Procedures and Results of Wave 6, Max Plank Institute for Psychological Research, Munich.

    Google Scholar 

  • Carey, S. (1985). Conceptual Change in Childhood, Bradford Books, MIT Press, Cambridge, MA.

    Google Scholar 

  • Carnegie Mellon researchers say direct instruction, rather than ‘discovery learning’ is the best way to teach process skills in science (1998, February 13). Retrieved April 19, 2004 from http://www.eurekalert.org/pub_releases/1998-02/CMU-CMRS-130298.php.

  • Case, R. (1974) Structures and strictures: Some functional limitations on the course of cognitive growth. Cognitive Psychology, 6: 544–573.

    Google Scholar 

  • Case, R. (1978). Intellectual development from birth to adulthood: A neo-Piagetian interpretation. In Siegler, R. (Ed.), Children’s Thinking: What Develops?, Lawrence Erlbaum Associates, Hillsdale, NJ.

    Google Scholar 

  • Case, R. (1992). The Mind’s Staircase: Exploring the Conceptual Underpinnings of Children’s Thought and Knowledge, Erlbaum, Hillsdale, NJ.

    Google Scholar 

  • Case, R., and Okamoto, Y. (1996). The role of central conceptual structures in the development of children’s thought. Monographs of the Society for Research in Child Development (Serial No. 246).

  • Cavanagh, S. (2004), November 10). NCLB could alter science teaching. Education Week 24(11): pp. 1: 12–13.

    Google Scholar 

  • Chen, Z., and Klahr, D. (1999). All other things being equal: Children’s acquisition of the control of variables strategy. Child Development 70: 1098–1120.

    Article  CAS  PubMed  Google Scholar 

  • Chinn, C. A., and Malhotra, B. (2001). Epistemologically authentic scientific reasoning. In Crowley, K., Schunn, C. D., and Okada T. (Eds.), Designing for Science: Implications for Everyday, Classroom, and Professional Settings, Erlbaum, Mahwah, NJ, pp. 351–392.

    Google Scholar 

  • Crane, E. (2005). The Science Storm. District Administration, #x0023;3(March).

  • CTB/McGraw-Hill (2001a). TerraNova CAT Complete Battery Plus Level 15, Form C, CTB/McGraw-Hill, Monterey, CA.

    Google Scholar 

  • CTB/McGraw-Hill (2001b). TerraNova CAT Complete Battery Plus Level 16, Form C, CTB/McGraw-Hill, Monterey, CA.

    Google Scholar 

  • Elkind, D. (2001). Much too early. Education Next 1: 8–21.

    Google Scholar 

  • Gagne, R. (1968). Contributions of learning to human development. Psychological Review 75: 177–191

    CAS  PubMed  Google Scholar 

  • Glaser, R., and Resnick, L. (1972). Instructional psychology. Annual Review of Psychology 23: 207–276.

    Article  Google Scholar 

  • Hiebert, J., Gallimore, R., and Stigler, W. (2002). A knowledge base for the teaching profession: What would it look like and how can we get one? Educational Researcher 31: 3–15.

    Google Scholar 

  • International Association for the Evaluation of Educational Achievement. (1998). TIMSS Science Items: Released Set for Population 2 (Seventh and Eighth Grades). Retrieved on September 16, 2004 from http://timss.bc.edu/timss1995i/ TIMSSPDF/BSItems.pdf.

  • Jacoby, L. L. (1978). On interpreting the effects of repetition: Solving a problem versus remembering a solution. Journal of Verbal Learning and Verbal Behavior 17: 649–667.

    Article  Google Scholar 

  • Janulaw, S. (2004, January 9). Letter to California curriculum commission from California science teachers association. Retrieved on April 7, 2004 from http://science.nsta.org/nstaexpress/ltr_to_commission.htm.

  • Klahr, D., and Carver, S. M. (1995). Scientific Thinking about Scientific Thinking. Monographs of the Society for Research in Child Development #x0023;245, 60: 137–151.

  • Klahr, D., and Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of direct instruction and discovery learning. Psychological Science 15: 661–667.

    Article  PubMed  Google Scholar 

  • Klahr, D., and Simon, H. A. (1999). Studies of scientific discovery: Complementary approaches and convergent findings. Psychological Bulletin 125: 524–543.

    Article  Google Scholar 

  • Klahr, D., and Carver, S. M. (1988). Cognitive objectives in a LOGO debugging curriculum: Instruction, learning, and transfer. Cognitive Psychology 20: 362–404.

    Article  Google Scholar 

  • Klahr, D., and Chen, Z. (2003). Overcoming the “positive capture” strategy in young children: Learning about indeterminacy. Child Development 74: 1256–1277.

    Article  Google Scholar 

  • Klahr, D., Chen, Z., and Toth, E. (2001). Cognitive development and science education: Ships passing in the night or beacons of mutual illumination? In Carver, S. M., and Klahr, D. (Eds.), Cognition and Instruction: 25 Years of Progress, Erlbaum, Mahwah, NJ.

    Google Scholar 

  • Klahr, D., Fay, A. L., and Dunbar, K. (1993). Heuristics for scientific experimentation: A developmental study. Cognitive Psychology 24: 111–146.

    Article  Google Scholar 

  • Kuhn, D., and Angelev, J. (1976). An experimental study of the development of formal operational thought. Child Development 47: 697–706.

    Google Scholar 

  • Kuhn, D., Amsel, E., and O’Loughlin, M. (1988). The Development of Scientific Thinking. Harcourt, Brace & Jovanovich, New York.

    Google Scholar 

  • Lagemann, E. C. (2000). An Elusive Science: The Troubling History of Educational Research. Chicago: University of Chicago Press.

    Google Scholar 

  • Lagemann, E. C. (1996). Contested terrain: A history of education research in the United States, 1890–1990. Educational Researcher 26: 5.

    Google Scholar 

  • Li, J., and Klahr, D. (in press). The psychology of scientific thinking: Implications for science teaching and learning. In Rhoton, J., and Shane, C. A. (Eds.), Issues and Trends in science Learning for the 21st Century, NSELA/NSTA.

  • Loveless, T. (1998). The Use and Misuse of Research in Educational Reform. Brookings Papers on Educational Policy: 1998, pp. 279–317.

  • Masnick, A. M., Klahr, D., and Morris, B. J. (in press) Separating signal from noise: Children’s understanding of error and variability in experimental outcomes. In Lovett, M., and Shah, P. (Eds.), Thinking With Data, Erlbaum, Mahwah, NJ.

  • Masnick, A. M., and Klahr, D. (2003). Error matters: An initial exploration of elementary school children’s understanding of experimental error. Journal of Cognition and Development 4: 67–98.

    Article  Google Scholar 

  • Masnick, A. M., and Morris, B. J. (2002). Reasoning from data: The effect of sample size and variability on children’s and adults’ conclusions. In Gray, W. D., and Schunn, C. D. (Eds.), Proceedings of The Twenty-Fourth Annual Conference of The Cognitive Science Society, Erlbaum, Mahwah, NJ, pp. 643–648.

    Google Scholar 

  • McCloskey, M. (1983). Naive theories of motion. In Gentner D., and Stevens A. (Eds.), Mental Models, Erlbaum, Hillsdale, NJ, pp. 229–324.

    Google Scholar 

  • McDaniel, M. A., and Schlager, M. S. (1990). Discovery learning and transfer of problem solving skills. Cognition and Instruction 7: 129–159.

    Google Scholar 

  • Metz, K. E. (1995). Reassessment of developmental constraints on children’s science instruction. Review of Educational Research 65: 93–127.

    Google Scholar 

  • National Center for Education Statistics (n.d.). The Nation’s Report Card (NAEP): 1996 Assessment Science Public Release Grade 4. Retrieved on September 16, 2004 from http://nces.ed.gov/nationsreportcard/itmrls/sampleq/96sci4.pdf.

  • National Center for Education Statistics (n.d.). The Nation’s Report Card (NAEP): 1996 Assessment Science Public Release Grade 8. Retrieved on September 16, 2004 from http://nces.ed.gov/nationsreportcard/itmrls/sampleq/96sci8.pdf.

  • National Research Council. (1996). National Science Education Standards, National Academy Press, Washington, DC.

    Google Scholar 

  • National Science Teachers Association. (1990, January). Position Statement: Laboratory Science, Retrieved on November 16, 2004 from http://www.nsta.org/postitionstatement&psid=16.

  • National Science Teachers Association. (2002, July). Position Statement: Elementary School Science. Retrieved on {November} 16, 2004 from http://www.nsta.org/positionstatement/&psid=8.

  • No Child Left Behind Act of 2001. (2002). Public Law 107–110-January 8, 2002. 107th Congress. Washington, DC.

  • Palinscar, A., and Brown, A. (1984). Reciprocal teaching of comprehension-fostering and comprehension monitoring activities. Cognition and Instruction 1: 117–175.

    Google Scholar 

  • Pennsylvania Department of Education. (2002). Preparing for the STEE grade 7 assessment. In STEE Assessment Handbook, Retrieved March 15, 2004 from http://www.pde.state.pa.us/a_and_t/lib/a_and_t/STEEAssessHandbook.pdf.

  • Piaget, J. (1970). Piaget’s Theory. In Mussed, P. H. (Ed.), Carmichael’s Manual of Child Psychology: Vol. 1 (3rd edn.) Wiley, New York, pp 703–772.

    Google Scholar 

  • Rosnow, R. L., and Rosenthal, R. (1996). Computing contrasts, effect sizes, and counternulls on other people’s published data: General procedures for research consumers. Psychological Methods 1, 331–340.

    Google Scholar 

  • Ruby, A. (2001). Hands-on Science and Student Achievement, RAND, Santa Monica, CA, Retrieved on December 1, 2004 from http://www.rand.org/publications/RGSD/RGSD159/.

  • Ruffman, T., Perner, J., Olson, D. R., and Doherty, M. (1993). Reflecting on scientific thinking: Children’s understanding of the hypothesis-evidence relation. Child Development 64: 1617–1636.

    CAS  PubMed  Google Scholar 

  • Samarapungavan, A., and Wiers, R. W. (1997). Children’s thoughts on the origin of species: A study of explanatory coherence. Cognitive Science 21: 147–177.

    Article  Google Scholar 

  • Schauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology 32: 102–119.

    Article  Google Scholar 

  • Schauble, L., Glaser, R., Duschl, R., Schulze, S., and John, J. (1995). Students’ understanding of the objectives and procedures of experimentation in the science classroom. Journal of the Learning Sciences 4: 131–166.

    Article  Google Scholar 

  • Schauble, L., Klopfer, L., and Raghavan, K. (1991). Students’ transition from an engineering model to a science model of experimentation. Journal of Research in Science Teaching 18, 859–882.

    Google Scholar 

  • Shaklee, H., and Paszek, D. (1985). Covariation judgment: Systematic rule use in middle childhood. Child Development 56: 1229–1240.

    Google Scholar 

  • Stand and deliver...or let them discover? (2004, November). District Administration, p. 79.

  • Stickel, S. (2004, January 29). Curriculum Commission: Approval of Criteria for Evaluating k-8 Science Instructional Materials for 2006 Primary Action, Retrieved on April 7, 2004 from http://www.cde.ca.gov/be/pn/im/documents/infocibcfirfeb04item01.pdf.

  • Stokes, D. E. (1997). Pasteur’s Quadrant: Basic Science and Technological Innovation, Brookings Institution Press, Washington, DC.

    Google Scholar 

  • Strauss, S. (1998). Cognitive development and science education: Toward a middle level model. In Sigel, I., and Renninger, K. A. (Eds.), Damon, W. (Series Ed.) Handbook of Child Psychology: Vol. 4. Child Psychology in Practice,/Wiley, New York, pp. 357–400.

  • Strauss, V. (2004, February 3). Back to basics vs. hands-on instruction: California rethinks science labs. The Washington Post, p. A12.

  • Suppes, P., and Groen, G. (1967). Some counting models for first grade performance data on simple addition facts. In Scandura, J. (Ed.), Research In Mathematics Education, National Council of Teachers of Mathematics, Washington DC.

    Google Scholar 

  • Toth, E., Klahr, D., and Chen, Z. (2000). Bridging research and practice: A cognitively-based classroom intervention for teaching experimentation skills to elementary school children. Cognition and Instruction 18: 423–459.

    Article  Google Scholar 

  • Triona, L. M., and Klahr, D. (2002, August). Children’s developing ability to create external representations: Separating what information is included from how the information is represented. Proceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society, 1044.

  • Triona, L. M., and Klahr, D. (2003). Point and click or grab and heft: Comparing the influence of physical and virtual instructional materials on elementary school students’ ability to design experiments. Cognition and Instruction 21: 149–173.

    Article  Google Scholar 

  • Tweed, A. (2004, December 15). Direct instruction: is it the most effective science teaching strategy? NSTA WebNews Digest. Retreived on January 3, 2005 from http://www.nsta.org/main/news/stories/education_story.php?news_story_ID=50045.

  • Uttal, D. H., Liu, L. L., and DeLoache, J. S. (1999). Taking a hard look at concreteness: Do concrete objects help young children to learn symbolic relations? In Balter, L., and Tamis-LeMonda, C. (Eds.), Child Psychology: A Handbook of Contemporary Issues, Garland, Harlen, CT, pp. 177–192.

    Google Scholar 

  • Uttal, D. H., Scudder, K. V., and DeLoache, J. S. (1997). Manipulatives as symbols: A new perspective on the use of concrete objects to teach mathematics. Journal of Applied Developmental Psychology 18: 37–54.

    Article  Google Scholar 

  • Wasson, B., Lundvigsen, S. and Hoppe, U. (2003). Designing for change in networked learning environments. In Wasson, B., Ludvigsen S., and Hoppe, U. (Eds.), Proceedings of the Computer Support for Collaborative Learning 2003 conference, Kluwer Academic Publishers, Boston, pp. 405–409.

    Google Scholar 

  • Wheeler, G. (2004, January 15). Letter to California Curriculum Commission From National Science Teachers Association, Retrieved on April 7, 2004 from http://science.nsta.org/nstaexpress/california_letter.htm.

  • Zimmerman, C. (2000). The development of scientific reasoning skills. Developmental Review 20: 99–149.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Klahr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klahr, D., Li, J. Cognitive Research and Elementary Science Instruction: From the Laboratory, to the Classroom, and Back. J Sci Educ Technol 14, 217–238 (2005). https://doi.org/10.1007/s10956-005-4423-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10956-005-4423-5

Keywords

Navigation