Skip to main content
Log in

Exploiting Distance Technology to Foster Experimental Design as a Neglected Learning Objective in Labwork in Chemistry

  • Published:
Journal of Science Education and Technology Aims and scope Submit manuscript

Abstract

This paper deals with the design process of a remote laboratory for labwork in chemistry. In particular, it focuses on the mutual dependency of theoretical conjectures about learning in the experimental sciences and technological opportunities in creating learning environments. The design process involves a detailed analysis of the expert task and knowledge, e.g., spectrophotometry as a method for the determination of the concentration of a compound in a solution. In so doing, modifications in transposing tasks and knowledge to the learning situation can be monitored. The remote laboratory is described, as well as the specific features that alter the degree of fidelity of the learning situation in comparison with the expert one. It is conjectured that these alterations might represent actual benefits for learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alessi, S. M., and Trolip, S. R. (1991). Computer-Based Instruction: Methods and Developments Development (second edition), Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Arce, J., and Betancourt, R. (1997). Student-designed experiments inscientific lab instruction. Journal of College Science Teaching 27: 114–118.

    Google Scholar 

  • Balacheff, N. (1996). Advanced educational technology: Knowledge revisited. InLiao, T. T. (Ed.), Advanced Educational Technology: Research Issues andFuture Potential, NATO ASI Series F: Computer and Systems Sciences, Springer, Berlin, pp. 1–20.

    Google Scholar 

  • Bécu-Robinault, K. (1997). Rôle de l’expérience en classe de physique dans l’acquisition des connaissances sur les phénomènes énergétiques [The role of experiments in physics teaching in acquiring knowledge about energy phenomena], Unpublished Doctoral dissertation, Université Claude Bernard, Lyon, France.

  • Chevallard, Y. (1985), La transposition didactique[Didactical transposition], La pensée sauvage, Grenoble.

    Google Scholar 

  • Cooper, M., Donnelly, A., and Ferreira, J. (2002). Remote controlled experiments for teaching over the internet: A comparison of approaches developed in the pearl project. Paper Presented at the ASCILITE 2002 Conference, December 8–11, 2002, Auckland, New Zealand.

  • Darley, B. (1996). Exemple d’une transposition didactique de la démarche scientifique dans un TP de biologie en DEUG 2ème année [Example of a didactical transposition of a scientific approach in labwork in biology in the second year of university]. Didaskalia 9: 31–56.

    Google Scholar 

  • de Jong, T., and van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research 68: 179–202.

    Google Scholar 

  • de Vries, E. (1994). Structuring Information for Design Problem Solving. Unpublished Doctoral dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands.

  • de Vries, E. (2003). Educational technology and multimedia from a cognitive perspective: Knowledge from inside the computer, onto the screen, and into our heads? In van Oostendorp, H. (Ed.), Cognition in a Digital World, Lawrence Erlbaum Associates, Mahwah, NJ, pp. 155–174.

    Google Scholar 

  • Desautel, J., Larochelle, M., Gagné, B., and Ruel, F. (1993). La formation à l’enseignement des sciences : le virage épistémologique [Teacher training in science: the epistemological turn]. Didaskalia 1: 49–67.

    Google Scholar 

  • Giordan, A., Pochon, J., Aimar, C., Host, V., Le Jan, E., Stern, G., Vilain, C., Catesson, A.-M., Grosbois, M., Rieutord, M.,Taugourdeau, J., and Bosch-Vidal, C. (1986). Preliminary analysis to build an integrative conceptual network for biological education at university level. European Journal of Science Education 8: 251–261.

    Google Scholar 

  • Hmelo, C. E., Holton, D. H., and Kolodner, J. L. (2000). Designing to learn about complex systems. The Journal of the Learning Sciences 9: 247–298.

    Google Scholar 

  • Kozma, R., Chin, E., Russel, J., and Marx, N. (2000). The roles of representations and tools in the chemistry laboratory and their implications for chemistry learning. The Journal of the Learning Sciences 9: 105–143.

    Google Scholar 

  • Novak, J. D. (1988). Learning science and the science of learning. Studies in Science Education 15: 77–101.

    Google Scholar 

  • Orlandi, E. (1991). Conceptions des enseignants sur la démarche expérimentale [Teacher conceptions on the experimental approach]. Aster 13: 111–132.

    Google Scholar 

  • Rollnick, M., Zwane, S., Staskun, M., Lotz, S., and Green, G. (2001). Improving pre-laboratory preparation of first year university chemistry students. International Journal of Science Education 23: 1053–1071.

    Google Scholar 

  • Schraagen, J. M. (1993). How experts solve a novel problem in experimental design. Cognitive Science 17: 285–309.

    Google Scholar 

  • Senese, F. A., Bender, C., and Kile, J. (2000). The Internet chemistry set: web-based remote laboratories for distance education in chemistry. Interactive Multimedia Electronic Journal of Computer-Enhanced Learning 2(2)

  • Séré, M.-G. (2002). Towards renewed research questions from the outcomes of the European project labwork in science education. Science Education 86: 624–644.

    Google Scholar 

  • Séré, M.-G., and Beney, M. (1997). Le fonctionnement intellectuel d’étudiants réalisant des expériences : observation de séances de travaux pratiques en premier cycle universitaire scientifique [Students thinking while doing experiments: observation of labwork in the first years of higher education]. Didaskalia 11: 75–102.

    Google Scholar 

  • Tiberghien, A., Veillard, L., Le Maréchal, J.-F., Buty, C., and Millar, R. (2001). An analysis of labwork tasks used in science teaching at upper secondary school and university levels in several European countries. Science Education 85: 483–508.

    Google Scholar 

  • Trgalová, J. (2003). Systèmes de formation à distance. Proposition d’une typologie [Distance learning systems, a typology]. In Desmoulins, C., Marquet, P., and Bouhineau, D. (Eds.), EIAH2003 Environnements Informatiques pour l’Apprentissage Humain (Proceedings of EIAH 2003, April 15–17, Strasbourg, France), INRP, Paris, pp. 563–566.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric d’Ham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

d’Ham, C., de Vries, E., Girault, I. et al. Exploiting Distance Technology to Foster Experimental Design as a Neglected Learning Objective in Labwork in Chemistry. J Sci Educ Technol 13, 425–434 (2004). https://doi.org/10.1007/s10956-004-1464-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10956-004-1464-0

Navigation