Skip to main content
Log in

Variational Principle for Weakly Dependent Random Fields

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Using an alternative notion of entropy introduced by Datta, the max-entropy, we present a new simplified framework to study the minimizers of the specific free energy for random fields which are weakly dependent in the sense of Lewis, Pfister, and Sullivan. The framework is then applied to derive the variational principle for the loop O(n) model and the Ising model in a random percolation environment in the nonmagnetic phase, and we explain how to extend the variational principle to similar models. To demonstrate the generality of the framework, we indicate how to naturally fit into it the variational principle for models with an absolutely summable interaction potential, and for the random-cluster model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bricmont, J., Kupiainen, A.: Phase transition in the \(3\)d random field ising model. Commun. Math. Phys. 116(4), 539–572 (1988)

    Article  ADS  Google Scholar 

  2. Burton, R.M., Keane, M.: Density and uniqueness in percolation. Commun. Math. Phys. 121(3), 501–505 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  3. Datta, N.: Min- and max-relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55(6), 2816–2826 (2009)

    Article  MathSciNet  Google Scholar 

  4. Van Enter, A., Verbitskiy, E.: On the variational principle for generalized Gibbs measures (2004). arXiv preprint arXiv:math-ph/0410052v1

  5. Van Enter, A.C.D., Fernández, R., Sokal, A.D.: Regularity properties and pathologies of position-space renormalization-group transformations: scope and limitations of Gibbsian theory. J. Stat. Phys. 72(5), 879–1167 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. Van Enter, A., Maes, C., Schonmann, R.H., Shlosman, S.: The Griffiths singularity random field. In: Minlos, R.A., Shlosman, S., Suhov, Y.M. (eds.) American Mathematical Society Translations, Series 2, vol. 198, pp. 51–58. American Mathematical Society, Providence (2000)

    Google Scholar 

  7. Fernández, R.: Gibbsianness and non-Gibbsianness in lattice random fields. In: Bovier, A., Dunlop, F., van Enter, A., Den Hollander, F., Dalibard, J. (eds.) Mathematical Statistical Physics: Lecture Notes of the Les Houches Summer School 2005, pp. 731–798. Elsevier Science, New York (2006)

    Chapter  Google Scholar 

  8. Fernández, R., Le Ny, A., Redig, F.: Variational principle and almost quasilocality for renormalized measures. J. Stat. Phys. 111(1–2), 465–478 (2003)

    Article  MathSciNet  Google Scholar 

  9. Georgii, H.-O.: Gibbs Measures and Phase Transitions, De Gruyter Studies in Mathematics, vol. 9, 2nd edn. Walter de Gruyter, Berlin (2011)

    Book  Google Scholar 

  10. Grimmett, G.: The Random-Cluster Model, Grundlehren der Mathematischen Wissenschaften, vol. 333. Springer, Berlin (2006)

    Google Scholar 

  11. Hajłasz, P., Malý, J.: Approximation in Sobolev spaces of nonlinear expressions involving the gradient. Ark. Mat. 40(2), 245–274 (2002)

    Article  MathSciNet  Google Scholar 

  12. Külske, C., Le Ny, A., Redig, F.: Relative entropy and variational properties of generalized Gibbsian measures. Ann. Probab. 32(2), 1691–1726 (2004)

    Article  MathSciNet  Google Scholar 

  13. Lefevere, R.: Variational principle for some renormalized measures. J. Stat. Phys. 96(1–2), 109–133 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  14. Lewis, J.T., Pfister, C.-E., Sullivan, W.G.: Entropy, concentration of probability and conditional limit theorems. Markov Process. Relat. 1(3), 319–386 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Maes, C., Redig, F., Van Moffaert, A.: Almost Gibbsian versus weakly Gibbsian measures. Stoch. Process. Appl. 79(1), 1–15 (1999)

    Article  MathSciNet  Google Scholar 

  16. Maes, C., Redig, F., Van Moffaert, A.: The restriction of the Ising model to a layer. J. Stat. Phys. 96(1–2), 69–107 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  17. Peled, R., Spinka, Y.: Lectures on the spin and loop \(O(n)\) models (2017). arXiv preprint arXiv:1708.00058v1

  18. Pfister, C.-E.: Thermodynamical aspects of classical lattice systems. In: Sidoravicius, V. (ed.) In and Out of Equilibrium: Probability with a Physics Flavor, pp. 393–472. Birkhäuser, Boston (2002)

    Chapter  Google Scholar 

  19. Pfister, C.-E., Vande Velde, K.: Almost sure quasilocality in the random cluster model. J. Stat. Phys. 79(3), 765–774 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  20. Rassoul-Agha, F., Seppäläinen, T.: A Course on Large Deviations with an Introduction to Gibbs Measures, Graduate Studies in Mathematics, vol. 162. American Mathematical Society, Providence (2015)

    Book  Google Scholar 

  21. Seppäläinen, T.: Large deviations for lattice systems. I. Parametrized independent fields. Probab. Theory Relat. Fields 96(2), 241–260 (1993)

    Article  MathSciNet  Google Scholar 

  22. Seppäläinen, T.: Large deviations for lattice systems. II. Nonstationary independent fields. Probab. Theory Relat. Fields 97(1–2), 103–112 (1993)

    Article  MathSciNet  Google Scholar 

  23. Seppäläinen, T.: Entropy, limit theorems, and variational principles for disordered lattice systems. Commun. Math. Phys. 171(2), 233–277 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  24. Seppäläinen, T.: Entropy for translation-invariant random-cluster measures. Ann. Probab. 26(3), 1139–1178 (1998)

    Article  MathSciNet  Google Scholar 

  25. Stroock, D.W., Zeitouni, O.: Microcanonical distributions, Gibbs states, and the equivalence of ensembles. In: Durrett, R., Kesten, H. (eds.) Random Walks, Brownian Motion, and Interacting Particle Systems, pp. 399–424. Birkhäuser, Boston (1991)

    Chapter  Google Scholar 

  26. Verbitskiy, E.: Variational principle for fuzzy Gibbs measures. Mosc. Math. J. 10(4), 811–829 (2010)

    Article  MathSciNet  Google Scholar 

  27. Zegarlinski, B.: Interactions and pressure functionals for disordered lattice systems. Commun. Math. Phys. 139(2), 305–339 (1991)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Nilanjana Datta, Aernout van Enter, Geoffrey Grimmett, James Norris, and Peter Winkler for many useful discussions. The authors would like to express their special gratitude to Nathanaël Berestycki for enabling them to collaborate on this paper. The first author was supported by the Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, the UK Engineering and Physical Sciences Research Council Grant EP/L016516/1, and the Shapiro Visitor Program of the Department of Mathematics, Dartmouth College. The second author was supported by the UK Engineering and Physical Sciences Research Council Grant EP/L018896/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Tassy.

Additional information

Communicated by Hal Tasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lammers, P.G., Tassy, M. Variational Principle for Weakly Dependent Random Fields. J Stat Phys 179, 846–870 (2020). https://doi.org/10.1007/s10955-020-02538-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02538-8

Keywords

Mathematics Subject Classification

Navigation