Skip to main content

Microcanonical Distributions, Gibbs States, and the Equivalence of Ensembles

  • Chapter
Random Walks, Brownian Motion, and Interacting Particle Systems

Part of the book series: Progress in Probability ((PRPR,volume 28))

Abstract

Consider an ideal gas of n identical particles which have achieved equilibrium subject only to the constraint that their average energy is some specified constant. For the purposes of this discussion, we will interpret this sentence as saying that we have

  1. i)

    a Polish space E (the phase space of the individual particles),

  2. ii)

    a σ-finite measure λ (the Liouville measure for the dynamical system governing the motion of the individual particles) on (E,BE) (BE is the Borel field over E),

  3. iii)

    a function U:E → [0, ∞) (the energy),

and that we are looking at is a regular version An of the conditional probability under λn given that \(\frac{1}{n}\sum\nolimits_{m = 1}^n U \left( {{x_m}} \right) = 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borel, Émile, Sur les principes de la théorie cinétique des gaz, Ann. de l’École Norm. sup., 3e série t.23 (1906), 9–33.

    MathSciNet  Google Scholar 

  2. Csiszár, I., Sanov property, generalized I-projection and a conditional limit theorem, Ann. Prob. 12 # 3 (1983), 768–793.

    Google Scholar 

  3. Deuschel, J.-D. and Stroock, D. W., “Large Deviations,” Academic Press Series in Pure & Appl. Math. 137, 1989.

    Google Scholar 

  4. Diaconis, P. and Freedman, D., A dozen de Finetti—style results in search of a theory, Ann. Inst. Poincaré, Sup. au #2. 23 (1987), 417–433.

    MathSciNet  Google Scholar 

  5. Kac, M., “Probability and Related Topics in Physical Sciences,” Interscience, 1959.

    Google Scholar 

  6. Khinchin, A., “Mathematical Foundations of Statistical Mechanics,” Dover Press, 1949.

    Google Scholar 

  7. Landford, O.E., Entropy and equilibrium states in classical statistical mechanics, in “Statistical Mechanics and Mathematical Problems,” Edited by A. Lenard. Lecture Notes in Physics 20, Springer, Berlin, 1973, pp. 1–113.

    Chapter  Google Scholar 

  8. Martin-Lof, Anders, “Statistical Mechanics and the Foundations of Thermodynamics,” Lecture Notes in Physics #101, Springer-Verlag, 1979.

    Google Scholar 

  9. McKean, H.P. Jr., Geometry of Differential Space, Ann. Prob. 1 (1973), 197–206.

    Article  MathSciNet  MATH  Google Scholar 

  10. Mehler, F.G., Über die Entwicklung einer Funktion von beliebig vielen Variabeln nach Laplaceschen Funktionen höherer Ordnung, J. Reine u. Angewandte Mathematik (1866), 161–176.

    Google Scholar 

  11. Ruelle, D., Correlation functionals, J. Math. Phys. 6 (1965), 201–220.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stroock, D.W., Zeitouni, O. (1991). Microcanonical Distributions, Gibbs States, and the Equivalence of Ensembles. In: Durrett, R., Kesten, H. (eds) Random Walks, Brownian Motion, and Interacting Particle Systems. Progress in Probability, vol 28. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0459-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0459-6_23

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6770-6

  • Online ISBN: 978-1-4612-0459-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics