Skip to main content
Log in

The Enskog Equation for Confined Elastic Hard Spheres

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A kinetic equation for a system of elastic hard spheres or disks confined by a hard wall of arbitrary shape is derived. It is a generalization of the modified Enskog equation in which the effects of the confinement are taken into account and it is supposed to be valid up to moderate densities. From the equation, balance equations for the hydrodynamic fields are derived, identifying the collisional transfer contributions to the pressure tensor and heat flux. A Lyapunov functional, \({\mathcal {H}}[f]\), is identified. For any solution of the kinetic equation, \({\mathcal {H}}\) decays monotonically in time until the system reaches the inhomogeneous equilibrium distribution, that is a Maxwellian distribution with a density field consistent with equilibrium statistical mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Enskog, D.: Kinetische Theorie der Waerme Leitung, reibung and Selbstdiffusion in Gewissen Verdichteten Gasen und Fluessigkeiten. Kungl. Sv. Vetenskapsakad. Hand3. 63, 3 (1922)

    MATH  Google Scholar 

  2. Chapman, S., Cowling, T.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1935)

    MATH  Google Scholar 

  3. Résibois, P., de Leener, M.: Classical Kinetic Theory of Fluids. Wiley, New York (1977)

    MATH  Google Scholar 

  4. García Colín, L.S., Barajas, L., Piña, E.: Corrections to Thorne’s equations for binary mixtures. Phys. Lett. A 37, 395 (1971)

    Article  ADS  Google Scholar 

  5. van Beijeren, H., Ernst, M.H.: The modified Enskog equation. Physica 68, 437–456 (1973)

    Article  ADS  Google Scholar 

  6. Lebowitz, J., Percus, J., Sykes, J.: Kinetic-equation approach to time-dependent correlation functions. Phys. Rev. 188, 487 (1969)

    Article  ADS  Google Scholar 

  7. Résibois, P.: \(H\)-Theorem for the (modified) nonlinear Enskog equation. Phys. Rev. Lett. 40, 1409 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  8. Résibois, P.: \(H\)-Theorem for the (modified) nonlinear Enskog equation. J. Stat. Phys. 19, 593 (1978)

    Article  ADS  Google Scholar 

  9. van Beijeren, H.: Equilibrium distribution of hard-sphere systems and revised Enskog theory. Phys. Rev. Lett. 51, 1503 (1983)

    Article  ADS  Google Scholar 

  10. Brey, J.J., Maynar, P., García de Soria, M.I.: Kinetic equation and nonequilibrium entropy for a quasi-two-dimensional gas. Phys. Rev. E 94, 040103(R) (2016)

    Article  ADS  Google Scholar 

  11. Thompson, P.A., Grest, G.S., Robbins, M.O.: Phase transitions and universal dynamics in confined films. Phys. Rev. Lett. 68, 3448 (1992)

    Article  ADS  Google Scholar 

  12. Dietrich, S., Haase, A.: Scattering of X-rays and neutrons at interfaces. Phys. Rep. 260, 1 (1995)

    Article  ADS  Google Scholar 

  13. Schmidt, M., Löwen, H.: Freezing between two and three dimensions. Phys. Rev. Lett. 76, 4552 (1996)

    Article  ADS  Google Scholar 

  14. Schmidt, M., Löwen, H.: Phase diagram of hard spheres confined between two parallel plates. Phys. Rev. E 55, 7228 (1997)

    Article  ADS  Google Scholar 

  15. Franosch, T., Lang, S., Schilling, R.: Fluids in extreme confinement. Phys. Rev. Lett. 109, 240601 (2012)

    Article  ADS  Google Scholar 

  16. Tarazona, P., Marconi, U., Evans, R.: Phase equilibria of fluid interfaces and confined fluids. Mol. Phys. 60, 573 (1987)

    Article  ADS  Google Scholar 

  17. Rosenfeld, Y., Schmidt, M., Löwen, H., Tarazona, P.: Fundamental-measure free-energy density functional for hard spheres: dimensional crossover and freezing. Phys. Rev. E 55, 4245 (1997)

    Article  ADS  Google Scholar 

  18. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)

    Book  MATH  Google Scholar 

  19. Brey, J.J., García de Soria, M.I., Maynar, P.: Boltzmann kinetic equation for a strongly confined gas of hard spheres. Phys. Rev. E 96, 042117 (2017)

    Article  ADS  Google Scholar 

  20. Evans, R.: The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 28, 143 (1979)

    Article  ADS  Google Scholar 

  21. van Beijeren, H., Ernst, M.H.: Kinetic theory of hard spheres. J. Stat. Phys. 21, 125 (1979)

    Article  ADS  Google Scholar 

  22. Lutsko, J.F.: Molecular chaos, pair correlations, and shear-induced ordering of hard spheres. Phys. Rev. Lett. 77, 2225 (1997)

    Article  ADS  Google Scholar 

  23. Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids. Academic Press, Amsterdam (2006)

    MATH  Google Scholar 

  24. Brey, J.J., Dufty, J.W., Santos, A.: Dissipative dynamics for hard spheres. J. Stat. Phys. 87, 1051 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon, Oxford (1969)

    MATH  Google Scholar 

  26. Campbell, C.S.: Rapid granular flows. Annu. Rev. Fluid Mech. 22, 57 (1990)

    Article  ADS  Google Scholar 

  27. Brito, R., Risso, D., Soto, R.: Hydrodynamic modes in a confined granular fluid. Phys. Rev. E 87, 022209 (2013)

    Article  ADS  Google Scholar 

  28. Marchetti, M.C., Joanny, J.F., Ramaswamy, S., Liverpool, T.B., Prost, J., Rao, M., Simha, R.A.: Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143 (2013)

    Article  ADS  Google Scholar 

  29. Melby, P., Vega Reyes, F., Prevost, A., Robertson, R., Kumar, P., Egolf, D.A., Urbach, J.S.: The dynamics of thin vibrated granular layers. J. Phys. 17, S2689 (2005)

    Google Scholar 

  30. Reis, P.M., Ingale, R.A., Shattuck, M.D.: Caging dynamics in a granular fluid. Phys. Rev. Lett. 98, 188301 (2007)

    Article  ADS  Google Scholar 

  31. Rivas, N., Ponce, S., Gallet, B., Risso, D., Soto, R., Cordero, P., Mújica, N.: Sudden chain energy transfer events in vibrated granular media. Phys. Rev. Lett. 106, 088001 (2011)

    Article  ADS  Google Scholar 

  32. Castillo, G., Mújica, N., Soto, R.: Fluctuations and criticality of a granular solid-liquid-like phase transition. Phys. Rev. Lett. 109, 095701 (2012)

    Article  ADS  Google Scholar 

  33. Khain, E., Aranson, I.S.: Hydrodynamics of a vibrated granular monolayer. Phys. Rev. E 84, 031308 (2011)

    Article  ADS  Google Scholar 

  34. Piasecki, J.: Local \(H\)-theorem for the revised Enskog equation. J. Stat. Phys. 48, 1203 (1987)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministerio de Educación y Ciencia (Spain) through Grant No. FIS2014-53808-P (partially financed by FEDER funds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Maynar.

Appendices

Appendix A: Evaluation of the Collisional Fluxes

The objective of this appendix is to evaluate the collisional contribution to the pressure tensor and heat flux. We will proceed using intuitive arguments, taking into account the collisions that contribute to the flux with their corresponding momentum or energy interchange.

Let us first analyze the pressure tensor case. Let us consider a surface element, \(\varDelta \mathbf {s}\), centered at \({\mathbf {r}}\) and two particles at contact in such a way that the line joining the two centers cross the surface (see Fig. 2). When the collision takes place, the variation of the momentum of particle 2 is

$$\begin{aligned} \varDelta p_{2,i}=m(\varvec{\hat{\sigma }}\cdot {\mathbf {v}}_{12})\hat{\sigma }_i. \end{aligned}$$
(65)
Fig. 2
figure 2

Sketch of a typical collision that contributes to the flux through \(\varDelta \mathbf {s}\). It is assumed that particles 1 and 2 have the centers at \(0_1\) and \(0_2\) respectively

It is assumed that, in order to evaluate the flux, \(\varDelta p_{2,i}\) cross the surface through the intersection of the surface with the line joining the two particles. To calculate the collisional contribution to the flux, we have to consider all the possible collisions of this kind with its corresponding \(\varDelta p_{2,i}\). The surface divides the space in two regions; of course, the centers of the particles must be in different regions. We will consider that particle 2 is in the region pointed by \(\varDelta \mathbf {s}\), as in the Figure. The center of particle 1 can be parameterized by

$$\begin{aligned} {\mathbf {r}}_1(\lambda , \varvec{\hat{\sigma }})={\mathbf {r}}+\lambda \sigma \varvec{\hat{\sigma }}, \end{aligned}$$
(66)

with \(\lambda \in (0,1)\) and \(\varvec{\hat{\sigma }}\) a unitary vector of arbitrary orientation, but compatible with \(\varDelta \mathbf {s}\), i.e. \(\varvec{\hat{\sigma }}\cdot \varDelta \mathbf {s}<0\). In these conditions, particle 2 must be in a solid angle

$$\begin{aligned} \varDelta \hat{\sigma }_2=\frac{|\varvec{\hat{\sigma }}\cdot \varDelta \mathbf {s}|}{(\lambda \sigma )^{d-1}}, \end{aligned}$$
(67)

around

$$\begin{aligned} {\mathbf {r}}_2(\lambda , \varvec{\hat{\sigma }})={\mathbf {r}}-(1-\lambda )\sigma \varvec{\hat{\sigma }}. \end{aligned}$$
(68)

Note that we have used the same notation for the \(\varvec{\hat{\sigma }}\) of the collision in Eq. (65), and for the parameter to specify the position of particle 1 in Eq. (66). This can be done because its difference is of order \(\varDelta \hat{\sigma }_2\).

Let us consider that particle 1 is in the volume element \(\varDelta {\mathbf {r}}_1=(\lambda \sigma )^{d-1}\varDelta (\lambda \sigma )\varDelta \varvec{\hat{\sigma }}\) parameterized by \((\lambda ,\varvec{\hat{\sigma }})\). Hence, if particle 2 collides with particle 1 in the time interval \(\varDelta t\) with \(\varvec{\hat{\sigma }}\), it is in the volume element \(\varDelta {\mathbf {r}}_2=\sigma ^{d-1}\varDelta \hat{\sigma }_2 |{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}|\varDelta t\). Then, the total number of collisions that contribute to the flux for given \({\mathbf {v}}_1\) and \({\mathbf {v}}_2\) is

$$\begin{aligned}&\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})f_2[{\mathbf {r}}_1(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_1, {\mathbf {r}}_2(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_2]\varDelta {\mathbf {r}}_1\varDelta {\mathbf {v}}_1 \varDelta {\mathbf {r}}_2\varDelta {\mathbf {v}}_2\nonumber \\&=\sigma ^d\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}) f_2[{\mathbf {r}}_1(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_1, {\mathbf {r}}_2(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_2]|\varvec{\hat{\sigma }}\cdot \varDelta \mathbf {s}| |{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}|\varDelta {\mathbf {v}}_1\varDelta {\mathbf {v}}_2\varDelta \varvec{\hat{\sigma }}\varDelta \lambda \varDelta t. \end{aligned}$$
(69)

Let us take \(\varDelta \mathbf {s}=\varDelta s\mathbf {e}_j\) where \(\mathbf {e}_j\) is a unit vector in the direction of one of our coordinate axes. The amount of momentum that travels through the surface in the direction of \(\varDelta \mathbf {s}\) per unit time and area due to collisions of particles with velocities \({\mathbf {v}}_1\) and \({\mathbf {v}}_2\) is then

$$\begin{aligned} \varDelta P_{ij}^{(c)}=m\sigma ^d \theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}) f_2[{\mathbf {r}}_1(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_1, {\mathbf {r}}_2(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_2]\hat{\sigma }_i\hat{\sigma }_j ({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2\varDelta {\mathbf {v}}_1\varDelta {\mathbf {v}}_2\varDelta \varvec{\hat{\sigma }}\varDelta \lambda , \end{aligned}$$
(70)

where we have taken into account that \(|{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}|=-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}\) and \(|\hat{\sigma }_j|=-\hat{\sigma }_j\). The net collisional pressure tensor is obtained integrating in Eq. (70) for all the allowed collisions.

Far from the boundary, when there are not geometrical constraints, the result is

$$\begin{aligned} P_{ij}^{(c)}=m\sigma ^d\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int _0^1d\lambda \int _{\hat{\sigma }_j<0} d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}) f_2[{\mathbf {r}}_1(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_1, {\mathbf {r}}_2(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_2]\hat{\sigma }_i\hat{\sigma }_j ({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2. \end{aligned}$$
(71)

The integration can also be done summing for \(\hat{\sigma }_j>0\) but, then, the amount of momentum that crosses the surface is \(\varDelta p_{1,i}=-\varDelta p_{2,i}\), so that

$$\begin{aligned} P_{ij}^{(c)}=m\sigma ^d\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int _0^1d\lambda \int _{\hat{\sigma }_j>0} d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}) f_2[{\mathbf {r}}_1(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_1, {\mathbf {r}}_2(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_2]\hat{\sigma }_i\hat{\sigma }_j ({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2, \end{aligned}$$
(72)

because, in this case, \(|\hat{\sigma }_j|=\hat{\sigma }_j\). Hence, we can re-write Eq. (71) as

$$\begin{aligned} P_{ij}^{(c)}=\frac{m}{2}\sigma ^d \int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int _0^1d\lambda \int d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}) f_2[{\mathbf {r}}_1(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_1, {\mathbf {r}}_2(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_2]\hat{\sigma }_i\hat{\sigma }_j ({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2, \end{aligned}$$
(73)

that coincides with the expression derived in [24] for \(d=3\) when the factorization for \(f_2\) given by Eq. (16) is used.

If there are geometrical constraints, we proceed similarly. Integrating in Eq. (70) for the allowed collisions, it is obtained

$$\begin{aligned} P_{ij}^{(c)}=m\sigma ^d\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int \int _{\Sigma ^-} d\lambda d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}) f_2[{\mathbf {r}}_1(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_1, {\mathbf {r}}_2(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_2]\hat{\sigma }_i\hat{\sigma }_j ({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2, \end{aligned}$$
(74)

where the region of integration in \((\lambda , \varvec{\hat{\sigma }})\) is

$$ \begin{aligned} \Sigma ^-=\{(\lambda ,\varvec{\hat{\sigma }})|\varvec{\hat{\sigma }}\in \varOmega _d\quad \text {with}\quad \hat{\sigma }_j<0 \quad \& \quad 0\le \lambda \le 1 \quad \& \quad {\mathbf {r}}_1(\lambda ,\varvec{\hat{\sigma }})\in V \quad \& \quad {\mathbf {r}}_2(\lambda ,\varvec{\hat{\sigma }})\in V \}. \end{aligned}$$
(75)

\(P_{ij}^{(c)}\) can also be calculated summing for \(\hat{\sigma }_j>0\) but, then, the amount of momentum that crosses the surface is \(\varDelta p_{1,i}=-\varDelta p_{2,i}\), so that

$$\begin{aligned} P_{ij}^{(c)}=m\sigma ^d\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int \int _{\Sigma ^+} d\lambda d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}) f_2[{\mathbf {r}}_1(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_1, {\mathbf {r}}_2(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_2]\hat{\sigma }_i\hat{\sigma }_j ({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2, \end{aligned}$$
(76)

where the region of integration in \((\lambda , \varvec{\hat{\sigma }})\) is

$$ \begin{aligned} \Sigma ^+=\{(\lambda ,\varvec{\hat{\sigma }})|\varvec{\hat{\sigma }}\in \varOmega _d\quad \text {with}\quad \hat{\sigma }_j>0 \quad \& \quad 0\le \lambda \le 1 \quad \& \quad {\mathbf {r}}_1(\lambda ,\varvec{\hat{\sigma }})\in V \quad \& \quad {\mathbf {r}}_2(\lambda ,\varvec{\hat{\sigma }})\in V \}. \end{aligned}$$
(77)

Hence, we can re-write Eq. (74) as

$$\begin{aligned} P_{ij}^{(c)}=\frac{m}{2} \sigma ^d\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int \int _{\Sigma } d\lambda d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}) f_2[{\mathbf {r}}_1(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_1, {\mathbf {r}}_2(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_2]\hat{\sigma }_i\hat{\sigma }_j ({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2, \end{aligned}$$
(78)

where the region of integration in \((\lambda , \varvec{\hat{\sigma }})\) is

$$ \begin{aligned} \Sigma =\{(\lambda ,\varvec{\hat{\sigma }})|\varvec{\hat{\sigma }}\in \varOmega _d\quad \& \quad 0\le \lambda \le 1 \quad \& \quad {\mathbf {r}}_1(\lambda ,\varvec{\hat{\sigma }})\in V \quad \& \quad {\mathbf {r}}_2(\lambda ,\varvec{\hat{\sigma }})\in V \}. \end{aligned}$$
(79)

To calculate the collisional contribution to the energy flux, \(J_{E,j}^{(c)}\), the analysis is similar, but taking into account that, when the collision takes place, the variation of the energy of particle 2 is

$$\begin{aligned} \varDelta e_{2,i}=\frac{m}{2}(\varvec{\hat{\sigma }}\cdot {\mathbf {v}}_{12})^2 +m(\varvec{\hat{\sigma }}\cdot {\mathbf {v}}_{12})(\varvec{\hat{\sigma }}\cdot {\mathbf {v}}_{2}). \end{aligned}$$
(80)

Once \(J_{E,j}^{(c)}\) is calculated, the heat flux is expressed as \(q_{j}^{(c)}=J_{E,j}^{(c)}-\sum _{i}u_iP_{ij}^{(c)}\).

Appendix B: Evaluation of the Divergence of the Collisional Fluxes

As in the previous Appendix, we focus on the pressure tensor because the heat flux case is similar. Let us first re-write the collisional pressure tensor given by Eq. (36) in the form

$$\begin{aligned}&P_{ij}^{(c)}({\mathbf {r}},t)=\frac{m}{2}\sigma ^d\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int d\varvec{\hat{\sigma }}\nonumber \\&\quad \int _{\lambda _1({\mathbf {r}},\varvec{\hat{\sigma }})}^{\lambda _2({\mathbf {r}},\varvec{\hat{\sigma }})} d\lambda \theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})f_2[{\mathbf {r}}_1(\lambda ,\varvec{\hat{\sigma }}), {\mathbf {v}}_1,{\mathbf {r}}_2(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_2,t] ({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2\hat{\sigma _i}\hat{\sigma _j}, \end{aligned}$$
(81)

where \(\lambda _1({\mathbf {r}},\varvec{\hat{\sigma }})\) and \(\lambda _2({\mathbf {r}},\varvec{\hat{\sigma }})\) are such that \(\sigma \lambda _1({\mathbf {r}},\varvec{\hat{\sigma }})\) and \(\sigma \lambda _2({\mathbf {r}},\varvec{\hat{\sigma }})\) are the minimum and maximum distance from \({\mathbf {r}}\) to \({\mathbf {r}}_1(\lambda ,\varvec{\hat{\sigma }})\) respectively, for a given orientation, \(\varvec{\hat{\sigma }}\). In the bulk of the system, we trivially have \(\lambda _1({\mathbf {r}},\varvec{\hat{\sigma }})=0\) and \(\lambda _2({\mathbf {r}},\varvec{\hat{\sigma }})=1\), for all \(\varvec{\hat{\sigma }}\), but closed to the boundary these functions depend on the geometry of it.

Taking into account Eq. (81), the divergence of \(P_{ij}^{(c)}\) can be expressed as

$$\begin{aligned}&\frac{\partial }{\partial {\mathbf {r}}}\cdot P_{ij}^{(c)}({\mathbf {r}})\nonumber \\&\quad =\frac{m}{2}\sigma ^d\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2\varvec{\hat{\sigma }}\varvec{\hat{\sigma }}\cdot \frac{\partial }{\partial {\mathbf {r}}}\lambda _2 f_2[{\mathbf {r}}_1(\lambda _2,\varvec{\hat{\sigma }}), {\mathbf {v}}_1,{\mathbf {r}}_2(\lambda _2,\varvec{\hat{\sigma }}),{\mathbf {v}}_2] \nonumber \\&\qquad -\frac{m}{2}\sigma ^d\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2\varvec{\hat{\sigma }}\varvec{\hat{\sigma }}\cdot \frac{\partial }{\partial {\mathbf {r}}}\lambda _1 f_2[{\mathbf {r}}_1(\lambda _1,\varvec{\hat{\sigma }}), {\mathbf {v}}_1,{\mathbf {r}}_2(\lambda _1,\varvec{\hat{\sigma }}),{\mathbf {v}}_2]\nonumber \\&\qquad +\frac{m}{2}\sigma ^d\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2\varvec{\hat{\sigma }}\nonumber \\&\int _{\lambda _1({\mathbf {r}},\varvec{\hat{\sigma }})}^{\lambda _2({\mathbf {r}},\varvec{\hat{\sigma }})} d\lambda \varvec{\hat{\sigma }}\cdot \frac{\partial }{\partial {\mathbf {r}}} f_2[{\mathbf {r}}_1(\lambda ,\varvec{\hat{\sigma }}), {\mathbf {v}}_1,{\mathbf {r}}_2(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_2]. \end{aligned}$$
(82)

Taking into account that

$$\begin{aligned} \frac{\partial }{\partial \lambda }f_2[{\mathbf {r}}_1(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_1, {\mathbf {r}}_2(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_2]={\varvec{\sigma }}\cdot \frac{\partial }{\partial {\mathbf {r}}} f_2[{\mathbf {r}}_1(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_1, {\mathbf {r}}_2(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_2], \end{aligned}$$
(83)

the last term of the r.h.s. of Eq. (82) can be written as

$$\begin{aligned}&\frac{m}{2}\sigma ^d\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2\varvec{\hat{\sigma }}\int _{\lambda _1({\mathbf {r}},\varvec{\hat{\sigma }})}^{\lambda _2({\mathbf {r}},\varvec{\hat{\sigma }})} d\lambda \varvec{\hat{\sigma }}\nonumber \\&\qquad \cdot \frac{\partial }{\partial {\mathbf {r}}} f_2[{\mathbf {r}}_1(\lambda ,\varvec{\hat{\sigma }}), {\mathbf {v}}_1,{\mathbf {r}}_2(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_2]\nonumber \\&\quad =\frac{m}{2}\sigma ^{d-1}\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2\varvec{\hat{\sigma }}f_2[{\mathbf {r}}_1(\lambda _2,\varvec{\hat{\sigma }}), {\mathbf {v}}_1,{\mathbf {r}}_2(\lambda _2,\varvec{\hat{\sigma }}),{\mathbf {v}}_2]\nonumber \\&\qquad -\frac{m}{2}\sigma ^{d-1}\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2\varvec{\hat{\sigma }}f_2[{\mathbf {r}}_1(\lambda _1,\varvec{\hat{\sigma }}), {\mathbf {v}}_1,{\mathbf {r}}_2(\lambda _1,\varvec{\hat{\sigma }}),{\mathbf {v}}_2].\nonumber \\ \end{aligned}$$
(84)

Changing variables,

$$\begin{aligned} {\mathbf {v}}_1&\leftrightarrow {\mathbf {v}}_2, \end{aligned}$$
(85)
$$\begin{aligned} \varvec{\hat{\sigma }}&\rightarrow -\varvec{\hat{\sigma }}, \end{aligned}$$
(86)

in the second term of the r.h.s., it is obtained

$$\begin{aligned}&\frac{m}{2}\sigma ^{d-1}\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2\varvec{\hat{\sigma }}f_2[{\mathbf {r}}_1(\lambda _1,\varvec{\hat{\sigma }}), {\mathbf {v}}_1,{\mathbf {r}}_2(\lambda _1,\varvec{\hat{\sigma }}),{\mathbf {v}}_2] \nonumber \\&\quad =-\frac{m}{2}\sigma ^{d-1}\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2\varvec{\hat{\sigma }}f_2[{\mathbf {r}}_1(\lambda _2,\varvec{\hat{\sigma }}), {\mathbf {v}}_1,{\mathbf {r}}_2(\lambda _2,\varvec{\hat{\sigma }}),{\mathbf {v}}_2],\nonumber \\ \end{aligned}$$
(87)

where it has taken into account that

$$\begin{aligned} {\mathbf {r}}_1[\lambda _1({\mathbf {r}},-\varvec{\hat{\sigma }}),-\varvec{\hat{\sigma }}]= & {} {\mathbf {r}}_2[\lambda _2({\mathbf {r}},\varvec{\hat{\sigma }}),\varvec{\hat{\sigma }}], \end{aligned}$$
(88)
$$\begin{aligned} {\mathbf {r}}_2[\lambda _1({\mathbf {r}},-\varvec{\hat{\sigma }}),-\varvec{\hat{\sigma }}]= & {} {\mathbf {r}}_1[\lambda _2({\mathbf {r}},\varvec{\hat{\sigma }}),\varvec{\hat{\sigma }}]. \end{aligned}$$
(89)

So, we have

$$\begin{aligned}&\frac{m}{2}\sigma ^d\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2\varvec{\hat{\sigma }}\int _{\lambda _1({\mathbf {r}},\varvec{\hat{\sigma }})}^{\lambda _2({\mathbf {r}},\varvec{\hat{\sigma }})} d\lambda \varvec{\hat{\sigma }}\nonumber \\&\qquad \cdot \frac{\partial }{\partial {\mathbf {r}}} f_2[{\mathbf {r}}_1(\lambda ,\varvec{\hat{\sigma }}), {\mathbf {v}}_1,{\mathbf {r}}_2(\lambda ,\varvec{\hat{\sigma }}),{\mathbf {v}}_2]\nonumber \\&\quad =m\sigma ^{d-1}\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2\varvec{\hat{\sigma }}f_2[{\mathbf {r}}_1(\lambda _2,\varvec{\hat{\sigma }}), {\mathbf {v}}_1,{\mathbf {r}}_2(\lambda _2,\varvec{\hat{\sigma }}),{\mathbf {v}}_2].\nonumber \\ \end{aligned}$$
(90)

Performing the same change of variables in the second term of the r.h.s. of Eq. (82), it is obtained

$$\begin{aligned}&\frac{m}{2}\sigma ^d\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2\varvec{\hat{\sigma }}\varvec{\hat{\sigma }}\cdot \frac{\partial }{\partial {\mathbf {r}}}\lambda _1 f_2[{\mathbf {r}}_1(\lambda _1,\varvec{\hat{\sigma }}), {\mathbf {v}}_1,{\mathbf {r}}_2(\lambda _1,\varvec{\hat{\sigma }}),{\mathbf {v}}_2]\nonumber \\&\quad =-\frac{m}{2}\sigma ^d\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2\varvec{\hat{\sigma }}\varvec{\hat{\sigma }}\nonumber \\&\qquad \cdot \frac{\partial }{\partial {\mathbf {r}}}\lambda _2 f_2[{\mathbf {r}}_1(\lambda _2,\varvec{\hat{\sigma }}), {\mathbf {v}}_1,{\mathbf {r}}_2(\lambda _2,\varvec{\hat{\sigma }}),{\mathbf {v}}_2]. \end{aligned}$$
(91)

By substituting Eqs. (90) and (91) into Eq. (82), it is obtained

$$\begin{aligned}&\frac{\partial }{\partial {\mathbf {r}}}\cdot P_{ij}^{(c)}({\mathbf {r}})=m\sigma ^{d-1}\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})\nonumber \\&\quad ({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2\varvec{\hat{\sigma }}\left[ 1+{\varvec{\sigma }}\cdot \frac{\partial }{\partial {\mathbf {r}}} \lambda _2\right] f_2[{\mathbf {r}}_1(\lambda _2,\varvec{\hat{\sigma }}), {\mathbf {v}}_1,{\mathbf {r}}_2(\lambda _2,\varvec{\hat{\sigma }}),{\mathbf {v}}_2]. \nonumber \\ \end{aligned}$$
(92)

Now, let us analyze the function \(1+{\varvec{\sigma }}\cdot \frac{\partial }{\partial {\mathbf {r}}}\lambda _2\). Let us first consider the simplest case of a plane located at \(z=-\sigma /2\). If \(\varvec{\hat{\sigma }}\in \varOmega ({\mathbf {r}})\), then \(\lambda _2({\mathbf {r}},\varvec{\hat{\sigma }})=1\). Let us define \(\varOmega ^+({\mathbf {r}})\), such that

$$\begin{aligned} \varOmega ({\mathbf {r}})\cup \varOmega ^+({\mathbf {r}}) =\varOmega _d. \end{aligned}$$
(93)

For a given \({\mathbf {r}}\), it is

$$\begin{aligned} z=-\lambda _2({\mathbf {r}},\varvec{\hat{\sigma }})\sigma \hat{\sigma }_z, \quad \text {for}\quad \varvec{\hat{\sigma }}\in \varOmega ^+({\mathbf {r}}), \end{aligned}$$
(94)

so that, for this simple case, we have

$$\begin{aligned} 1+{\varvec{\sigma }}\cdot \frac{\partial }{\partial {\mathbf {r}}} \lambda _2({\mathbf {r}},\varvec{\hat{\sigma }}) =\left\{ \begin{array}{l} 1\quad \text {if }\varvec{\hat{\sigma }}\in \varOmega ({\mathbf {r}})\\ 0\quad \text {if }\varvec{\hat{\sigma }}\in \varOmega ^+({\mathbf {r}}) \end{array} \right. \end{aligned}$$
(95)

In fact, if the plane has a different orientation, the result is the same because the function is a scalar. Moreover, in the general case of an arbitrary wall, the result also holds if the tangent plane is defined at \({\mathbf {r}}+\lambda _2\sigma \varvec{\hat{\sigma }}\).

Hence, by substituting Eq. (95) into Eq. (92), it is finally obtained

$$\begin{aligned}&\frac{\partial }{\partial {\mathbf {r}}}\cdot P_{ij}^{(c)}({\mathbf {r}})\nonumber \\ \nonumber \\&\quad =m\sigma ^{d-1}\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int _{\varOmega ({\mathbf {r}})} d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2\varvec{\hat{\sigma }}f_2({\mathbf {r}}+{\varvec{\sigma }}, {\mathbf {v}}_1,{\mathbf {r}},{\mathbf {v}}_2), \end{aligned}$$
(96)

where it has been used that \(\lambda _2({\mathbf {r}},\varvec{\hat{\sigma }})=1\) if \(\varvec{\hat{\sigma }}\in \varOmega ({\mathbf {r}})\).

It still remains to show that \(\frac{\partial }{\partial {\mathbf {r}}}\cdot P_{ij}^{(c)}\) coincides with \(\int d{\mathbf {v}}m{\mathbf {v}}J[f_2]\). By standard manipulations, it can be shown that

$$\begin{aligned}&\int d{\mathbf {v}}\psi ({\mathbf {v}})J[f_2]\nonumber \\&\quad =\sigma ^{d-1}\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int _{\varOmega ({\mathbf {r}})} d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}) |{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}| f_2({\mathbf {r}}+{\varvec{\sigma }}, {\mathbf {v}}_1,{\mathbf {r}},{\mathbf {v}}_2) (b_{\varvec{\hat{\sigma }}}-1)\psi ({\mathbf {v}}_2).\nonumber \\ \end{aligned}$$
(97)

Taking \(\psi ({\mathbf {v}})={\mathbf {v}}_i\), it is

$$\begin{aligned} \int d{\mathbf {v}}{\mathbf {v}}J[f_2]= -\sigma ^{d-1}\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2\int _{\varOmega ({\mathbf {r}})} d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})({\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }})^2\varvec{\hat{\sigma }}f_2({\mathbf {r}}+{\varvec{\sigma }}, {\mathbf {v}}_1,{\mathbf {r}},{\mathbf {v}}_2). \end{aligned}$$
(98)

Comparing Eq. (98) with Eq. (96), we finally have

$$\begin{aligned} \int d{\mathbf {v}}m{\mathbf {v}}J[f_2]= -\frac{\partial }{\partial {\mathbf {r}}}\cdot P^{(c)}, \end{aligned}$$
(99)

as we wanted to prove.

Appendix C: Evaluation of the Time Derivative of \({\mathcal {H}}\)

Let us first calculate \(\frac{d{\mathcal {H}}^{(k)}}{dt}\). Using standard manipulations and applying the boundary conditions, it is obtained

$$\begin{aligned} \frac{d{\mathcal {H}}^{(k)}}{dt}=\int d{\mathbf {r}}\int d{\mathbf {v}}J_E[f|f] \ln f({\mathbf {r}},{\mathbf {v}},t). \end{aligned}$$
(100)

Eq. (97) reduces in the Enskog case to

$$\begin{aligned} \int d{\mathbf {v}}\psi ({\mathbf {v}})J_E[f|f]= & {} \sigma ^{d-1}\int d{\mathbf {v}}_1\int d{\mathbf {v}}_2 \int _{\varOmega ({\mathbf {r}})} d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}) |{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}| g_2({\mathbf {r}}+{\varvec{\sigma }},{\mathbf {r}}|n)\nonumber \\&f({\mathbf {r}}+{\varvec{\sigma }},{\mathbf {v}}_1,t) f({\mathbf {r}},{\mathbf {v}}_2,t) (b_{\varvec{\hat{\sigma }}}-1)\psi ({\mathbf {v}}_2). \end{aligned}$$
(101)

By taking \(\psi =\ln f\), we have

$$\begin{aligned} \frac{d{\mathcal {H}}^{(k)}}{dt}= & {} \sigma ^{d-1}\int d{\mathbf {r}}\int d{\mathbf {v}}_1 \int d{\mathbf {v}}_2\int _{\varOmega ({\mathbf {r}})}d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}) |{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}| g_2({\mathbf {r}}+{\varvec{\sigma }},{\mathbf {r}}|n)\nonumber \\&f({\mathbf {r}}+{\varvec{\sigma }},{\mathbf {v}}_1,t) f({\mathbf {r}},{\mathbf {v}}_2,t) \ln \frac{f({\mathbf {r}},{\mathbf {v}}_2',t)}{f({\mathbf {r}},{\mathbf {v}}_2,t)}. \end{aligned}$$
(102)

Changing variables,

$$\begin{aligned} {\mathbf {v}}_1\leftrightarrow&{\mathbf {v}}_2, \end{aligned}$$
(103)
$$\begin{aligned} \varvec{\hat{\sigma }}\rightarrow&-\varvec{\hat{\sigma }}, \end{aligned}$$
(104)

Eq. (102) is transformed into

$$\begin{aligned} \frac{d{\mathcal {H}}^{(k)}}{dt}= & {} \sigma ^{d-1}\int d{\mathbf {r}}\int d{\mathbf {v}}_1 \int d{\mathbf {v}}_2\int _{\widetilde{\varOmega }({\mathbf {r}})}d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}) |{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}| g_2({\mathbf {r}}-{\varvec{\sigma }},{\mathbf {r}}|n)\nonumber \\&f({\mathbf {r}}-{\varvec{\sigma }},{\mathbf {v}}_2,t) f({\mathbf {r}},{\mathbf {v}}_1,t) \ln \frac{f({\mathbf {r}},{\mathbf {v}}_1',t)}{f({\mathbf {r}},{\mathbf {v}}_1,t)}, \end{aligned}$$
(105)

where, now, the angular integration is taken over the new region, \(\widetilde{\varOmega }({\mathbf {r}})\), defined in such a way that \(\varvec{\hat{\sigma }}\in \widetilde{\varOmega }({\mathbf {r}})\) if and only if \({\mathbf {r}}-{\varvec{\sigma }}\in V\). Finally, by changing the space variable, \({\mathbf {r}}\rightarrow {\mathbf {r}}+{\varvec{\sigma }}\), it is obtained

$$\begin{aligned} \frac{d{\mathcal {H}}^{(k)}}{dt}= & {} \sigma ^{d-1}\int d{\mathbf {r}}\int d{\mathbf {v}}_1 \int d{\mathbf {v}}_2\int _{\varOmega ({\mathbf {r}})}d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}) |{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}| g_2({\mathbf {r}}+{\varvec{\sigma }},{\mathbf {r}}|n)\nonumber \\&f({\mathbf {r}}+{\varvec{\sigma }},{\mathbf {v}}_1,t) f({\mathbf {r}},{\mathbf {v}}_2,t) \ln \frac{f({\mathbf {r}}+{\varvec{\sigma }},{\mathbf {v}}_1',t)}{f({\mathbf {r}}+{\varvec{\sigma }},{\mathbf {v}}_1,t)}, \end{aligned}$$
(106)

where we have taken into account that \(g_2({\mathbf {r}}+{\varvec{\sigma }},{\mathbf {r}}|n) =g_2({\mathbf {r}},{\mathbf {r}}+{\varvec{\sigma }}|n)\). Taking into account Eq. (102) and (106), we have

$$\begin{aligned} \frac{d{\mathcal {H}}^{(k)}}{dt}= & {} \frac{\sigma ^{d-1}}{2} \int d{\mathbf {r}}\int d{\mathbf {v}}_1 \int d{\mathbf {v}}_2\int _{\varOmega ({\mathbf {r}})}d\varvec{\hat{\sigma }}\theta (-{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}) |{\mathbf {v}}_{12}\cdot \varvec{\hat{\sigma }}| g_2({\mathbf {r}}+{\varvec{\sigma }},{\mathbf {r}}|n)\nonumber \\&f({\mathbf {r}}+{\varvec{\sigma }},{\mathbf {v}}_1,t) f({\mathbf {r}},{\mathbf {v}}_2,t) \ln \frac{f({\mathbf {r}}+{\varvec{\sigma }},{\mathbf {v}}_1',t) f({\mathbf {r}},{\mathbf {v}}_2',t)}{f({\mathbf {r}}+{\varvec{\sigma }},{\mathbf {v}}_1,t) f({\mathbf {r}},{\mathbf {v}}_2,t)}, \end{aligned}$$
(107)

that is the expression of the main text.

Now let us calculate \(\frac{d{\mathcal {H}}^{(c)}}{dt}\). The first contribution is

$$\begin{aligned} \frac{d}{dt}\ln \phi (t)= & {} \frac{1}{\phi (t)}\frac{d}{dt}\int d{\mathbf {r}}_1 w({\mathbf {r}}_1,t)\dots \int d{\mathbf {r}}_Nw({\mathbf {r}}_N,t) \varTheta ({\mathbf {r}}_1,\ldots ,{\mathbf {r}}_N)\nonumber \\= & {} \int d{\mathbf {r}}\frac{n({\mathbf {r}},t)}{w({\mathbf {r}},t)} \frac{\partial }{\partial t}w({\mathbf {r}},t), \end{aligned}$$
(108)

where Eq. (14) has been used. The second contribution is

$$\begin{aligned} \frac{d}{dt}\int d{\mathbf {r}}n({\mathbf {r}},t) \ln \frac{n({\mathbf {r}},t)}{w({\mathbf {r}},t)} =\int d{\mathbf {r}}\left[ \ln \frac{n({\mathbf {r}},t)}{w({\mathbf {r}},t)} \frac{\partial }{\partial t}n({\mathbf {r}},t) -\frac{n({\mathbf {r}},t)}{w({\mathbf {r}},t)} \frac{\partial }{\partial t}w({\mathbf {r}},t)\right] , \end{aligned}$$
(109)

so that

$$\begin{aligned} \frac{d{\mathcal {H}}^{(c)}}{dt}=-\int d{\mathbf {r}} \frac{\partial }{\partial t}n({\mathbf {r}},t) \ln \frac{n({\mathbf {r}},t)}{w({\mathbf {r}},t)}=\int d{\mathbf {r}} \ln \frac{n({\mathbf {r}},t)}{w({\mathbf {r}},t)}\frac{\partial }{\partial {\mathbf {r}}} \cdot [n({\mathbf {r}},t){\mathbf {u}}({\mathbf {r}},t)], \end{aligned}$$
(110)

where the continuity equation, Eq. (31), has been used. As

$$\begin{aligned} \int d{\mathbf {r}} \frac{\partial }{\partial {\mathbf {r}}}\cdot \left[ n({\mathbf {r}},t){\mathbf {u}}({\mathbf {r}},t) \ln \frac{n({\mathbf {r}},t)}{w({\mathbf {r}},t)}\right] = \int _{\partial V} d\mathbf {s}\cdot {\mathbf {u}}({\mathbf {r}},t)n({\mathbf {r}},t) \ln \frac{n({\mathbf {r}},t)}{w({\mathbf {r}},t)}=0, \end{aligned}$$
(111)

because \({\mathbf {u}}({\mathbf {r}},t)\cdot {\mathbf {N}}({\mathbf {r}})=0\) for all \({\mathbf {r}}\in \partial V\), Eq. (110) can be written in the form

$$\begin{aligned} \frac{d{\mathcal {H}}^{(c)}}{dt}=-\int d{\mathbf {r}} n({\mathbf {r}},t){\mathbf {u}}({\mathbf {r}},t)\cdot \frac{\partial }{\partial {\mathbf {r}}}\ln \frac{n({\mathbf {r}},t)}{w({\mathbf {r}},t)}. \end{aligned}$$
(112)

Now, using the property

$$\begin{aligned} \frac{\partial }{\partial {\mathbf {r}}_1} \theta (|{\mathbf {r}}_1-{\mathbf {r}}_2|-\sigma )= \frac{({\mathbf {r}}_1-{\mathbf {r}}_2)}{\sigma } \delta (|{\mathbf {r}}_1-{\mathbf {r}}_2|-\sigma ), \end{aligned}$$
(113)

we get, from the expressions of n and \(n_2\), Eqs. (14) and (18) respectively

$$\begin{aligned} \frac{\partial }{\partial {\mathbf {r}}_1} \left[ \frac{n({\mathbf {r}}_1,t)}{w({\mathbf {r}}_1,t)}\right] = \frac{1}{w({\mathbf {r}}_1,t)}\int d{\mathbf {r}}_2 \frac{({\mathbf {r}}_1-{\mathbf {r}}_2)}{\sigma } \delta (|{\mathbf {r}}_1-{\mathbf {r}}_2|-\sigma ) n_2({\mathbf {r}}_1,{\mathbf {r}}_2,t). \end{aligned}$$
(114)

Performing the pertinent integration to eliminate the delta function, we have

$$\begin{aligned} \frac{\partial }{\partial {\mathbf {r}}} \left[ \frac{n({\mathbf {r}},t)}{w({\mathbf {r}},t)}\right] =-\sigma ^{d-1} \frac{n({\mathbf {r}},t)}{w({\mathbf {r}},t)}\int _{\varOmega ({\mathbf {r}})}d\varvec{\hat{\sigma }}g_2({\mathbf {r}}+{\varvec{\sigma }},{\mathbf {r}}|n) n({\mathbf {r}}+{\varvec{\sigma }},t)\varvec{\hat{\sigma }}. \end{aligned}$$
(115)

This equation is the generalization of Eq. (25) for a generic w in our non equilibrium ensemble given by Eq. (9). By substituting Eq. (115) into (112), we finally obtain

$$\begin{aligned} \frac{d{\mathcal {H}}^{(c)}}{dt}= & {} \sigma ^{d-1}\int d{\mathbf {r}}\int _{\varOmega ({\mathbf {r}})} d\varvec{\hat{\sigma }}n({\mathbf {r}},t) n({\mathbf {r}}+{\varvec{\sigma }},t)\varvec{\hat{\sigma }}\cdot {\mathbf {u}}({\mathbf {r}},t)g_2({\mathbf {r}}+{\varvec{\sigma }},{\mathbf {r}}|n) \nonumber \\= & {} -\sigma ^{d-1}\int d{\mathbf {r}}\int _{\varOmega ({\mathbf {r}})} d\varvec{\hat{\sigma }}n({\mathbf {r}},t) n({\mathbf {r}}+{\varvec{\sigma }},t)\varvec{\hat{\sigma }}\cdot {\mathbf {u}}({\mathbf {r}}+{\varvec{\sigma }},t) g_2({\mathbf {r}}+{\varvec{\sigma }},{\mathbf {r}}|n),\nonumber \\ \end{aligned}$$
(116)

where, in the last step, we have changed \(\varvec{\hat{\sigma }}\rightarrow -\varvec{\hat{\sigma }}\) and \({\mathbf {r}}\rightarrow {\mathbf {r}}+{\varvec{\sigma }}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maynar, P., García de Soria, M.I. & Brey, J.J. The Enskog Equation for Confined Elastic Hard Spheres. J Stat Phys 170, 999–1018 (2018). https://doi.org/10.1007/s10955-018-1971-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-1971-7

Keywords

Navigation