Skip to main content
Log in

Kenneth Wilson and Lattice QCD

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We discuss the physics and computation of lattice QCD, a space-time lattice formulation of quantum chromodynamics, and Kenneth Wilson’s seminal role in its development. We start with the fundamental issue of confinement of quarks in the theory of the strong interactions, and discuss how lattice QCD provides a framework for understanding this phenomenon. A conceptual issue with lattice QCD is a conflict of space-time lattice with chiral symmetry of quarks. We discuss how this problem is resolved. Since lattice QCD is a non-linear quantum dynamical system with infinite degrees of freedom, quantities which are analytically calculable are limited. On the other hand, it provides an ideal case of massively parallel numerical computations. We review the long and distinguished history of parallel-architecture supercomputers designed and built for lattice QCD. We discuss algorithmic developments, in particular the difficulties posed by the fermionic nature of quarks, and their resolution. The triad of efforts toward better understanding of physics, better algorithms, and more powerful supercomputers have produced major breakthroughs in our understanding of the strong interactions. We review the salient results of this effort in understanding the hadron spectrum, the Cabibbo–Kobayashi–Maskawa matrix elements and CP violation, and quark-gluon plasma at high temperatures. We conclude with a brief summary and a future perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Contemporary research toward lattice gauge theory was described by Wilson in his plenary talk at 1983 Lepton Photon Symposium [2], and in more detail in his historical talk at 2004 International Symposium on Lattice Field Theory at FNAL [3].

  2. Probably his most famous numerical work is a renormalization group solution of the Kondo problem [57]. The numerical rigor he maintained for this work has become legendary. For the universal ratio of the two temperatures \(T_K\) and \(T_0\) characterizing the high and low temperature scales, he obtained \(W/(4\pi )=(4\pi )^{-1}T_K/T_0=0.1032(5)\). Six years later, an exact solution by the Bethe ansatz yielded \(W/(4\pi )=0.102676\ldots \) [58], verifying the Wilson’s number to the fourth digit within the estimated error!

  3. Strictly speaking, this identity requires positivity of the Hermitian part of matrix \(D\). We shall not go into this technical detail and mention only that this can be guaranteed.

References

  1. Wilson, K.G.: Confinement of Quarks, Cornell preprint CLNS-262 (Feb 1974), published in Phys. Rev. D 10, 2445 (1974)

  2. Wilson, K.G.: Future directions in particle theory. In: Proceedings of the 1983 Lepton Photon Symposium at High Energies, p. 812. Cornell University Press, Ithaca (1983)

  3. Wilson, K.G.: The origins of lattice gauge theory. Nucl. Phys. B (Proc. Suppl.) 140, 3–19 (2005)

  4. Creutz, M., Jacobs, L., Rebbi, C.: Experiments with a Gauge invariant Ising system. Phys. Rev. Lett. 42, 1390 (1979)

    ADS  Google Scholar 

  5. Wilson, K.G.: Monte Carlo calculations for the lattice gauge theory. In: Proceedings of the 1979 Cargese Summer Institute. NATO Sci. Ser. B59, 363 (1980)

  6. Creutz, M.: Solving quantized SU(2) Gauge theory, Brookhaven National Laboratory Print-79-0919 (Sep 1979): Monte Carlo Study of Quantized SU(2) Gauge Theory. Phys. Rev. D 21, 2308 (1980)

    MathSciNet  ADS  Google Scholar 

  7. Weingarten, D.: Monte Carlo evaluation of Hadron Masses in lattice gauge theories with fermions. Phys. Lett. B 109, 57 (1982)

    MathSciNet  ADS  Google Scholar 

  8. Hamber, H., Parisi, G.: Numerical estimates of Hadronic Masses in a pure SU(3) gauge theory. Phys. Rev. Lett. 47, 1792 (1981)

    ADS  Google Scholar 

  9. Particle Data Group web page http://pdg.lbl.gov

  10. Gross, D.J., Wilczek, F.: Ultraviolet behavior of non-Abelian gauge theories. Phys. Rev. Lett. 30, 1343 (1974)

    ADS  Google Scholar 

  11. Politzer, H.D.: Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346 (1974)

    ADS  Google Scholar 

  12. Symanzik, K.: Euclidean quantum field theory. In: Jost, R. (eds.) Local Quantum Field Theory, p. 152. Academic Press, New York (1969)

  13. Wilson, K.G., Kogut, J.: The renormalization group and the \(\epsilon \) expansion. Phys. Rep. 12, 75 (1974)

    ADS  Google Scholar 

  14. Osterwalder, K., Schrader, R.: Axioms for Euclidean green’s functions. Commun. Math. Phys. 31, 83 (1973)

    MathSciNet  ADS  MATH  Google Scholar 

  15. Osterwalder, K., Schrader, R.: Axioms for Euclidean green’s functions II. Commun. Math. Phys. 42, 281 (1975)

    MathSciNet  ADS  MATH  Google Scholar 

  16. Bali, G.S., Schilling, K.: Running coupling and the lambda parameter from SU(3) Lattice simulations. Phys. Rev. D 47, 661 (1993)

    ADS  Google Scholar 

  17. Bowler, K.C., Hasenfratz, A., Hasenfratz, P., Heller, U.M., Karsch, F., Kenway, R.D., Pawley, G.S., Wallace, D.J.: The SU(3) beta function at large beta. Phys. Lett. B 179, 375 (1986)

    ADS  Google Scholar 

  18. Gupta, R., Kilcup, G.W., Patel, A., Sharpe, S.R.: The beta function for pure gauge SU(3). Phys. Lett. B 211, 132 (1988)

    ADS  Google Scholar 

  19. Lüscher, M., Sommer, R., Weisz, P., Wolff, U.: A precise determination of the running coupling in the SU(3) Yang–Mills theory. Nucl. Phys. B413, 481 (1994)

    ADS  Google Scholar 

  20. ALPHA Collaboration, Della Morte, M., Frezzotti, R., Heitger, J., Rolf, J., Sommer, R., Wolff, U.: Computation of the strong coupling in QCD with two dynamical flavours. Nucl. Phys. B713, 378 (2005)

  21. PACS-CS Collaboration, Aoki, S., Ishikawa, K.I., Ishizuka, N., Izubuchi, T., Kadoh, D., Kanaya, K., Kuramashi, Y., Murano, K., Namekawa, Y., Okawa, M., Taniguchi, Y., Ukawa, A., Ukita, N., Yoshié, T.: Precise determination of the strong coupling constant in \(N_f = 2+1\) Lattice QCD with the Schrödinger Functional Scheme, JHEP 0910 (2009) 053

  22. Sommer, R., Tekin, F., Wolff, U.: Running of the SF-coupling with four massless flavours. PoS(Lattice 2010) (2010) 241

  23. Karsten, L.H., Smit, J.: Lattice fermions, species dubling, chiral invariance and the triangle anomaly. Nucl. Phys. B 183, 103 (1981)

    ADS  Google Scholar 

  24. Nielesen, H.B., Ninomiya, M.: Absence of neutrinos on a lattice. 1. Proof by Homotopy Theory. Nucl. Phys. B185, 20 (1981): Erratum-ibid. B195 (1982) 541

  25. Karsten, L.H.: Lattice fermions in euclidean space-time. Phys. Lett. B 104, 315 (1981)

    ADS  Google Scholar 

  26. Wilson, K.G.: Quarks and strings on a lattice. In: Zichichi, A. (ed.) Proceedings of the 14th Course of the International School of Subnuclear Physics, Erice, 1975. Plenum, New York (1977)

  27. Bochicchio, M., Maiani, L., Martinelli, G., Rossi, G.C., Testal, M.: Chiral symmetry on the lattice with Wilson Fermions. Nucl. Phys. B 262, 331 (1985)

    ADS  Google Scholar 

  28. Itoh, S., Iwasaki, Y., Oyanagi, Y., Yoshié, T.: Hadron spectrum in quenched QCD on a \(12^3\times 24\) lattice with renormalization group improved lattice SU(3) Gauge action. Nucl. Phys. B 274, 33 (1986)

    ADS  Google Scholar 

  29. Kawamoto, N.: Towards the phase structure of Euclidean Lattice Gauge theories with Fermions. Nucl. Phys. B 190, 617 (1981)

    MathSciNet  ADS  Google Scholar 

  30. Aoki, S.: New phase structure for lattice QCD with Wilson Fermions. Phys. Rev. D 30, 2653 (1984)

    ADS  Google Scholar 

  31. Frezzotti, R., Grassi, P., Sint, S., Weisz, P.: Lattice QCD with a chirally twisted mass term. JHEP 0108, 058 (2001)

    Google Scholar 

  32. Frezzotti, R., Rossi, G.C.: Chirally improving Wilson Fermions—I. O(a) Improvement, JHEP 08 (2004) 007

  33. Aoki, S., Baer, O.: Automatic \(O(a)\) improvement for twisted mass QCD in the presence of spontaneous symmetry breaking. Phys. Rev. D 74, 034511 (2006)

    ADS  Google Scholar 

  34. Susskind, L.: Lattice Fermions. Phys. Rev. D 16, 3031 (1977)

    ADS  Google Scholar 

  35. Sharatchandra, H.S., Thus, H.J., Weisz, P.: Susskind Fermions on a Euclidean lattice. Nucl. Phys. B 192, 205 (1981)

    ADS  Google Scholar 

  36. Kluberg-Stern, H., Morel, A., Napoly, O., Petersson, B.: Flavors of lagrangian susskind fermions. Nucl. Phys. B 220, 447 (1983)

    ADS  Google Scholar 

  37. Sharpe, S.R.: Rooted staggered fermions: good, bad or ugly?. PoS (Lattice 2006) 022 (2006)

  38. Lee, W.-J., Sharpe, S.R.: Partial flavor symmetry restoration for chiral staggered fermions. Phys. Rev. D 60, 114503 (1999)

    ADS  Google Scholar 

  39. Ginsparg, P.H., Wilson, K.G.: A remnant of chiral symmetry on the lattice. Phys. Rev. D 25, 2649 (1982)

    ADS  Google Scholar 

  40. Lüscher, M.: Exact chiral symmetry on the lattice and the Ginsparg–Wilson relation. Phys. Lett. B 428, 342 (1998)

    ADS  Google Scholar 

  41. Kaplan, D.B.: A method for simulating chiral fermions on the lattice. Phys. Lett. B 288, 342 (1992)

    MathSciNet  ADS  Google Scholar 

  42. Furman, V., Shamir, Y.: Axial symmetries in Lattice QCD with Kaplan fermions. Nucl. Phys. B 439, 54 (1995)

    ADS  Google Scholar 

  43. Narayanan, R., Neuberger, H.: A construction of lattice chiral gauge theories. Nucl. Phys. B 443, 305 (1995)

    MathSciNet  ADS  MATH  Google Scholar 

  44. Neuberger, H.: Exactly massless quarks on the Lattice. Phys. Lett. B 417, 141 (1998)

    MathSciNet  ADS  Google Scholar 

  45. Neuberger, H.: Vector-like gauge theories with almost massless fermions on the lattice. Phys. Rev. D 57, 5417 (1998)

    ADS  Google Scholar 

  46. Borici, A.: Truncated overlap fermions. Nucl. Phys. B (Proc. Suppl.) 83, 771 (2000)

    ADS  Google Scholar 

  47. Hasenfratz, P., Laliena, V., Niedermayer, F.: The index theorem in QCD with a finite cut-off. Phys. Lett. B 427, 125 (1998)

    ADS  Google Scholar 

  48. Arthur, R., Blum, T., Boyle, P.A., Christ, N.H., Garron, N., Hudspith, R.J., Izubuchi, T., Jung, C., Kelly, C., Lytle, A.T., Mawhinney, R.D., Murphy, D., Ohta, S., Sachrajda, C.T., Soni, A., Yu, J., Zanotti, J.M.: (RBC and UKQCD Collaborations), Domain Wall QCD with near-physical pions. Phys. Rev. D 87, 094514 (2013)

    ADS  Google Scholar 

  49. Aoki, S., Chiu, T.-W., Cossu, G., Feng, X., Fukaya, H., Hashimoto, S., Hsieh, T.-H., Kaneko, T., Matsufuru, H., Noaki, J.: Simulation of quantum chromodynamics on the lattice with exactly chiral lattice fermions. PTEP 2012, 01A106 (2012)

    Google Scholar 

  50. Hasenfratz, A., Hasenfratz, P., Niedermayer, F.: Simulating full QCD with the fixed point action. Phys. Rev. D 72, 114508 (2005)

    ADS  Google Scholar 

  51. Eichten, E.: Heavy quarks on the lattice. Nucl. Phys. Proc. Suppl. 4, 170 (1988)

    ADS  Google Scholar 

  52. Lepage, G.P., Thacker, B.A.: Effective Lagrangians for simulating heavy quark systems. Nucl. Phys. Proc. Suppl. 4, 199 (1988)

    ADS  Google Scholar 

  53. El-Khadra, A.X., Kronfeld, A.S., Mackenzie, P.B.: Massive fermions in lattice gauge theory. Phys. Rev. D 55, 3933 (1997)

    ADS  Google Scholar 

  54. Aoki, S., Kuramashi, Y., Tominaga, S.: Relativistic Heavy Quarks on the Lattice. Prog. Theor. Phys. 109, 383 (2003)

    ADS  MATH  Google Scholar 

  55. Christ, N.H., Li, M., Lin, H.-W.: Relativistic heavy quark effective action. Phys. Rev. D 76, 074505 (2007)

    ADS  Google Scholar 

  56. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    ADS  Google Scholar 

  57. Wilson, K.G.: The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773 (1975)

    ADS  Google Scholar 

  58. Andrei, N., Lowenstein, J.H.: Scales and scaling in the Kondo model. Phys. Rev. Lett. 46, 356 (1981)

    MathSciNet  ADS  Google Scholar 

  59. http://www.top500.org/lists/2014/11/

  60. Callaway, D.J.E., Rahman, A.: Microcanonical ensemble formulation of lattice gauge theory. Phys. Rev. Lett. 49, 613 (1982)

    ADS  Google Scholar 

  61. Polonyi, J., Wyld, H.W.: Microcanonical simulation of fermionic systems. Phys. Rev. Lett. 51, 2257 (1983)

    ADS  Google Scholar 

  62. Ukawa, A., Fukugita, M.: Langevin simulation including dynamical quark loops. Phys. Rev. Lett. 55, 1854 (1985)

    ADS  Google Scholar 

  63. Batrouni, G.G., Katz, G.R., Kronfeld, A.S., Lepage, G.P., Svetitsky, B., Wilson, K.G.: Langevin simulations of lattice field theories. Phys. Rev. D 32, 2736 (1985)

    ADS  Google Scholar 

  64. Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D.: Hybrid Monte Carlo. Phys. Lett. B 195, 216 (1987)

    ADS  Google Scholar 

  65. Ukawa, A. for CP-PACS and JLQCD Collaborations. Computational cost of full QCD simulations experienced by CP-PACS and JLQCD Collaborations. Nucl. Phys. B (Proc. Suppl.) 106 195 (2002)

  66. Lüscher, M.: Schwarz-preconditioned HMC algorithm for two-flavour lattice QCD. Comput. Phys. Commun. 165, 199 (2005)

    ADS  Google Scholar 

  67. Sexton, J.C., Weingarten, D.H.: Hamiltonian evolution for the hybrid Monte Carlo Algorithm. Nucl. Phys. B 380, 665 (1992)

    ADS  Google Scholar 

  68. Aoki, S., Ishikawa, K.-I., Ishizuka, N., Izubuchi, T., Kadoh, D., Kanaya, K., Kuramashi, Y., Namekawa, Y., Okawa, M., Taniguchi, Y., Ukawa, A., Ukita, N., Yoshié, T.: (PACS-CS Collaboration), 2+1 flavor lattice QCD toward the physical point. Phys. Rev. D 79, 034503 (2009)

    ADS  Google Scholar 

  69. Hasenbusch, M.: Speeding up the hybrid Monte Carlo algorithm for dynamical fermions. Phys. Lett. B 519, 177 (2001)

    ADS  MATH  Google Scholar 

  70. Horvath, I., Kennedy, A.D., Sint, S.: A new exact method for dynamical fermion computations with non-local actions. Nucl. Phys. B (Proc. Suppl.) 73, 834 (1999)

    ADS  MATH  Google Scholar 

  71. Lüscher, M.: Local coherence and deflation of the low quark modes in lattice QCD. JHEP 0707, 081 (2007)

    Google Scholar 

  72. Babich, R., Brannick, J., Brower, R.C., Clark, M.A., Manteuffel, T.A., McCormick, S.F., Osborn, J.C., Rebbi, C.: Adaptive multigrid algorithm for the lattice Wilson-dirac operator. Phys. Rev. Lett. 105, 201602 (2010)

    ADS  Google Scholar 

  73. Frommer, A., Kahl, K., Krieg, S., Leder, B., B. Rottmann, B.: Adaptive Aggregation based domain decomposition multigrid for the Lattice Wilson Dirac Operator. e-Print: arXiv:1303.1377 [hep-lat]

  74. Butler, F., Chen, H., Sexton, J., Vaccarino, A., Weingarten, D.: Hadron mass predictions of the valence approximation to lattice QCD. Phys. Rev. Lett. 70, 2849 (1993)

    ADS  Google Scholar 

  75. CP-PACS Collaboration, Aoki, S., Boyd, G., Burkhalter, R., Ejiri, S., Fukugita, M., Hashimoto, S., Iwasaki, Y., Kanaya, K., Kaneko, T., Kuramashi, Y., Nagai, K., Okawa, M., Shanahan, H.P., Ukawa, A., Yoshié, T.: Quenched light hadron spectrum. Phys. Rev. Lett. 84, 238 (2000)

  76. CP-PACS Collaboration: Ali Khan, A., Aoki, S., Boyd, G., Burkhalter, R., Ejiri, S., Fukugita, M., Hashimoto, S., Ishizuka, N., Iwasaki, Y., Kanaya, K., Kaneko, T., Kuramashi, Y., Manke, T., Nagai, K., Okawa, M., Shanahan, H.P., Ukawa, A., Yoshié, T.: Dynamical quark effects on light quark masses. Phys. Rev. Lett. 85, 4674 (2000) ; Erratum-ibid. 90 (2003) 029902

  77. Durr, S., Fodor, Z., Frison, J., Hoelbling, C., Hoffmann, R., Katz, S.D., Krieg, S., Kurth, T., Lellouch, L., Lippert, T., Szabo, K.K., Vulvert, G.: Ab-initio determination of light hadron masses. Science 322, 1224 (2008)

    ADS  Google Scholar 

  78. Lüscher, M.: States, two particle, on a torus and their relation to the scattering matrix. Nucl. Phys. B 354, 531 (1991)

    ADS  Google Scholar 

  79. Lüscher, M.: Signatures of unstable particles in finite volume. Nucl. Phys. B 364, 237 (1991)

    ADS  Google Scholar 

  80. Aoki, S., Fukugita, M., Ishikawa, K.-I., Ishizuka, N., Kanaya, K., Kuramashi, Y., Namekawa, Y., Okawa, M., Sasaki, K., Ukawa, A., Yoshié, T.: Lattice QCD calculation of the \(\rho \) Meson decay width. Phys. Rev. D 76, 094506 (2007)

    ADS  Google Scholar 

  81. Aoki, S., Fukugita, M., Ishikawa, K.-I., Ishizuka, N., Kanaya, K., Kuramashi, Y., Namekawa, Y., Okawa, M., Sasaki, K., Ukawa, A., Yoshié, T.: \(\rho \) Meson decay in \(2+1\) flavor lattice QCD. Phys. Rev. D 84, 094505 (2011)

  82. Duncan, A., Eichten, E., Thacker, H.: Electromagnetic splittings and light quark masses in lattice QCD. Phys. Rev. Lett. 76, 3894 (1996)

    ADS  Google Scholar 

  83. Blum, T., Zhou, R., Doi, T., Hayakawa, M., Izubuchi, T., Uno, S., Yamada, N.: Electromagnetic mass splittings of the low lying hadrons and quark masses from 2+1 flavor lattice QCD+QED. Phys. Rev. D 82, 094508 (2010)

    ADS  Google Scholar 

  84. Ishikawa, T., Blum, T., Hayakawa, M., Izubuchi, T., Jung, C., Zhou, R.: Full QED + QCD low-energy constants through reweighting. Phys. Rev. Lett. 109, 072002 (2012)

    ADS  Google Scholar 

  85. Aoki, S., Ishikawa, K.-I., Ishizuka, N., Kanaya, K., Kuramashi, Y., Nakamura, Y., Namekawa, Y., Okawa, M., Taniguchi, Y., Ukawa, A., Ukita, N., Yoshié, T.: (PACS-CS Collaboration), 1+1+1 flavor QCD + QED Simulation at the Physical Point. Phys. Rev. D 86, 034507 (2012)

  86. Borsanyi, S., Durr, S., Fodor, Z., Hoelbling, C., Katz, S.D., Krieg, S., Lellouch, L., Lippert, T., Portelli, A., Szabo, K.K.: Ab initio calculation of the neutron–proton mass difference, arXiv:1406.4088 (2014)

  87. Bazavov, A., Bernard, C., DeTar, C., Du, X., Freeman, W., Gottlieb, S., Heller, U.M., Hetrick, J.E., Laiho, J., Levkova, L., Oktay, M.B., Osborn, J., Sugar, R., Toussaint, D., Van de Water, R. S.: (The MILC Collaboration), MILC Results for Light Pseudo Scalars, PoS (CD09) 007 (2009)

  88. Durr, S., Fodor, Z., Hoelbling, C., Katz, S., Krieg, S., et al.: Lattice QCD at the physical point: light quark masses. Phys. Lett. B 701, 265 (2011)

    ADS  Google Scholar 

  89. Particle Data Group Collaboration: (C. Caso et al.), Review of particle physics. Eur. Phys. J. C3, 1 (1998)

  90. Particle Data Group Collaboration: (J. Beringer et al.) Review of particle physics. Phys. Rev. D 86, 010001 (2012)

  91. McNeile, C., Davies, C.T.H., Follana, E., Hornbostel, K., Lepage, G.P.: High-precision c and b masses and QCD coupling from current-current correlators in lattice and continuum QCD. Phys. Rev. D 82, 034512 (2010)

    ADS  Google Scholar 

  92. Quantum chromodyamics section in http://pdg.lbl.gov/2013/reviews/

  93. Bazavov, A., Brambilla, N., Garcia i Tormo, X., Petreczky, P., Soto, J., Vairo, A.: Determination of \(\alpha _s\) from the QCD static energy. Phys. Rev. D 86 114031 (2012)

  94. http://www.utfit.org/UTfit/

  95. http://ckmfitter.in2p3.fr

  96. http://www.slac.stanford.edu/xorg/hfag/

  97. FLAG Working Group, Aoki, S., Aoki, Y., Bernard, C., Blum, T., Colangelo, G., Della Morte, M., Durr, S., El-Khadra, A.X., Fukaya, H., Horsley, R., Juttner, A., Kaneko, T., Laiho, J., Lellouch, L., Leutwyler, H., Lubicz, V., Lunghi, E., Necco, S., Onogi. T., Pena, C., Sachrajda, C.T., Sharpe, S.R., Simula, S., Sommer, R., Van de Water, R.S., Vladikas, A., Wenger, U., Wittig, H.: Review of lattice results concerning low energy particle physics, arXiv:1310.8555 (August 2014)

  98. Bazavov, A., Bernard, C., Bouchard, C.M., DeTar, C., Di Pierro, M., El-Khadra, A.X., Evans, R.T., Freeland, E.D., Gamiz, E., Gottlieb, S., Heller, U.M., Hetrick, J.E., Jain, R., Kronfeld, A.S., Laiho, J., Levkova, L., Mackenzie, P.B., Neil, E.T., Oktay, M.B., Simone, J.N., Sugar, R., Toussaint, D., Van de Water, R.S.: Neutral B-meson mixing from three-flavor lattice QCD: determination of the SU(3)-breaking ratio \(\xi \). Phys. Rev. D 86, 034503 (2012)

    ADS  Google Scholar 

  99. Gulez, E., Gray, A., Wingate, M., Davies, C.T.H., Lepage, G.P., Shigemitsu, J.: B Meson semileptonic form factors from unquenched lattice QCD. Phys. Rev. D 73, 074502 (2006)

    ADS  Google Scholar 

  100. Bailey, J.A., Bernard, C., DeTar, C., Di Pierro, M., El-Khadra, A.X., Evans, R.T., Freeland, E.D., Gamiz, E., Gottlieb, S., Heller, U.M., Hetrick, J.E., Kronfeld, A.S., Laiho, J., Levkova, L., Mackenzie, P.B., Okamoto, M., Simone, J.N., Sugar, R., Toussaint, D., Van de Water, R.S.: The \(B\rightarrow \pi \ell \nu \) semi-leptonic form factor from three-flavor lattice QCD: a model-independent determination of \(\vert V_{ub}\vert \). Phys. Rev. D 79, 054507 (2009)

    ADS  Google Scholar 

  101. Bailey, J.A., Bazavov, A., Bernard, C., Bouchard, C.M., DeTar, C., Du, D., El-Khadra, A.X., Foley, J., Freeland, E.D., Gámiz, E., Gottlieb, S., Heller, U.M., Kronfeld, A.S., Laiho, J., Levkova, L., Mackenzie, P.B., Neil, E.T., Qiu, S.-W., Simone, J., Sugar, R., Toussaint, D., Van de Water, R.S., Zhou, R.: Update of \(\vert V_{cb} \vert \) from the \(\overline{B}\rightarrow D^{*}\ell \overline{\nu }\) form factor at zero recoil with three-flavor lattice QCD. Phys. Rev. D 89, 114504 (2014)

    ADS  Google Scholar 

  102. Fanti, V., et al.: A new measurement of direct CP violation in two pion decays of the neutral Kaon. Phys. Lett. B 465, 335 (1999)

    ADS  Google Scholar 

  103. Arabi-Harati, A., et al.: Measurements of direct CP violation, CPT symmetry, and other parameters in the neutral kaon system. Phys. Rev. D 67, 012005 (2003)

    ADS  Google Scholar 

  104. Buchalla, G., Buras, A.J., Harlander, M.K.: The Anatomy of \(\epsilon ^{\prime }/\epsilon \) in the Standard Model, Nucl. Phys. B 337, 313 (1990)

  105. Buchalla, G., Buras, A.J., Lautenbacher, M.E.: Weak decays beyond leading logarithms. Rev. Mod. Phys. 68, 1125 (1996)

    ADS  Google Scholar 

  106. Donini, A., Gimenez, V., Martinelli, G., Talevi, M., Vladikas, A.: Non-perturbative renormalization of lattice four-fermion operators without power subtractions. Eur. Phys. J. C 10, 121 (1999)

    ADS  Google Scholar 

  107. Ishizuka, N., Ishikawa, K.I., Ukawa, A., Yoshié, T.: Calculation of \(K\rightarrow \pi \pi \) decay amplitudes with improved Wilson Fermion, arXiv:1311.0958(2013)

  108. Lellouch, L., Lüscher, M.: Weak transition matrix elements from finite volume correlation functions. Commun. Math. Phys. 219, 31 (2001)

    ADS  MATH  Google Scholar 

  109. Blum, T., Boyle, P.A., Christ, N.H., Garron, N., Goode, E., Izubuchi, T., Jung, C., Kelly, C., Lehner, C., Lightman, M.: The \(K\rightarrow (\pi \pi )_{I=2}\) decay amplitude from lattice QCD. Phys. Rev. Lett. 108(2012), 141601 (2012)

    ADS  Google Scholar 

  110. Blum, T., Boyle, P.A., Christ, N.H., Garron, N., Goode, E., Izubuchi, T., Jung, C., Kelly, C., Lehner, C., Lightman, M.: The \(K\rightarrow (\pi \pi )_{I=2}\) Decay Amplitude from Lattice QCD. Phys. Rev. D 86, 074513 (2012)

  111. Brown, F.R., Butler, F.P., Chen, H., Christ, N.H., Dong, Z.-H., Schaffer, W., Unger, L.I., Vaccarino, A.: On the existence of a phase transition for QCD with three light quarks. Phys. Rev. Lett. 65, 2491 (1990)

    ADS  Google Scholar 

  112. Kanaya, K: Finite temperature QCD on the lattice—Status 2010. PoS (Lattice 2010) (2010) 012

  113. Polyakov, A.M.: Thermal properties of gauge fields and quark liberation. Phys. Lett. 72B, 477 (1978)

    MathSciNet  ADS  Google Scholar 

  114. Susskind, L.: Hot quark soup. Phys. Rev. D 20, 2610 (1979)

    ADS  Google Scholar 

  115. Yaffe, L.G., Svetitsky, B.: First order phase transition in the SU(3) gauge theory at finite temperature. Phys. Rev. D 26, 963 (1982)

    ADS  Google Scholar 

  116. Banks, T., Ukawa, A.: Deconfining and chiral phase transitions in quantum chromodynamics at finite temperature. Nucl. Phys. B 225, 145 (1983)

    ADS  Google Scholar 

  117. Pisarski, R.D., Wilczek, F.: Remarks on the chiral phase transition in chromodynamics. Phys. Rev. D 29, 338 (1984)

    ADS  Google Scholar 

  118. Gavin, S., Gocksch, A., Pisarski, R.D.: QCD and the chiral critical point. Phys. Rev. D 49, 3079 (1994)

    ADS  Google Scholar 

  119. Rajagopal, K.: The chiral phase transition in QCD: critical phenomena and long wavelength pion oscillations, quark-gluon plasma, vol. 2 (1995) (arXiv: hep-ph/9504310)

  120. Barber, M.N.: Finite size scaling, phase transitions and critical phenomena, Vol. 8, Lewobitz, C. Academic Press, Domb and J (1973)

  121. Fukugita, M., Okawa, M., Ukawa, A.: Order of the deconfining phase transition in SU(3) lattice gauge theory. Phys. Rev. Lett. 63, 1768 (1989)

    ADS  Google Scholar 

  122. Fukugita, M., Okawa, M., Ukawa, A.: Finite size scaling study of the deconfining phase transition in pure SU(3) Lattice Gauge Theory. Nucl. Phys. B 337, 181 (1990)

  123. JLQCD Collaboration: Aoki, S., Fukugita, M., Hashimoto, S., Ishikawa, K-I., Ishizuka, N., Iwasaki, Y., Kanaya, K., Kaneda, T., Kaya, S., Kuramashi, Y., Okawa, M., Onogi, T., Tominaga, S., Tsutsui, N., Ukawa, A., Yamada, N., Yoshié, T.: Phase structure of lattice QCD at finite temperature for 2+1 flavors of Kogut-Susskind quarks. Nucl. Phys. B (Proc.Suppl.) 73, 459 (1999)

  124. Karsch, F., Laermann, E., Schmidt, C.: The chiral critical point in three-flavor QCD. Phys. Lett. B 520, 41 (2001)

    ADS  MATH  Google Scholar 

  125. Ding, H.-T., Bazavov, A., Hegde, P., Karsch, F., Mukherjee, S., Petreczky, P.: Exploring phase diagram of \(N_f=3\) QCD at \(\mu =0\) with HISQ Fermions. PoS (Lattice 2011) 191 (2011)

  126. Aoki, S., Fukugita, M., Hashimoto, S., Ishizuka, N., Iwasaki, Y., Kanaya, K., Kuramashi, Y., Mino, H., Okawa, M., Ukawa, A., Yoshié, T.: (JLQCD Collaboration), scaling study of the two flavor chiral phase transition with the kogut-susskind quark action in lattice QCD. Phys. Rev. D 57, 3910 (1998)

    ADS  Google Scholar 

  127. Ali Khan, A., Aoki, S., Burkhalter, R., Ejiri, S., Fukugita, M., Hashimoto, S., Ishizuka, N., Iwasaki, Y., Kanaya, K., Kaneko, T., Kuramashi, Y., Manke, T., Nagai, K., Okamoto, M., Okawa, M., Ukawa, A., and Yoshié, T., (CP-PACS Collaboration)): Phase structure and critical temperature of two flavor QCD with renormalization group improved gauge action and clover improved Wilson quark action. Phys. Rev. D 63, 034502 (2001)

  128. Bonati, C., Cossu, G., D’Elia, M., Di Giacomo, A., Pica, C.: The order of the QCD transition with two light flavors. Nucl. Phys. A 820, 243C (2009)

    ADS  Google Scholar 

  129. Aoki, S., Fukaya, H., Taniguchi, Y.: Chiral symmetry restoration, the eigenvalue density of the dirac operator, and the axial U(1) anomaly at finite temperature. Phys. Rev. D 86, 114512 (2012)

    ADS  Google Scholar 

  130. Aoki, Y., Endrodi, G., Fodor, Z., Katz, S.D., Szabo, K.K.: The order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 443, 675 (2006)

    ADS  Google Scholar 

  131. Aoki, Y., Fodor, Z., Katz, S.D., Szabo, K.K.: The QCD Transition Temperature: Results with Physical Masses in the Continuum Limit. Phys. Lett. B 643, 46 (2006)

    ADS  Google Scholar 

  132. Wuppertal-Budapest Collaboration, Borsanyi, S., Fodor, Z., Hoelbling, C., Katz, S.D., Krieg, S., Ratti, C., Szabo, K.K.: Is there still any \(T_c\) Mystery in Lattice QCD? results with physical masses in the continuum limit III, JHEP 1009 (2010) 073

  133. Bazavov, A., Bhattacharya, T., Cheng, M., DeTar, C., Ding, H.-T., Gottlieb, S., Gupta, R., Hegde, P., Heller, U.M., Karsch, F., Laermann, E., Levkova, L., Mukherjee, S., Petreczky, P., Schmidt, C., Soltz, R.A., Soeldner, W., Sugar, R., Toussaint, D., Unger, W., Vranas, P.: (HotQCD Collaboration), Chiral and deconfinement aspects of the QCD transition. Phys. Rev. D 85, 054503 (2012)

    ADS  Google Scholar 

  134. Borsanyi, S., Fodor, Z., Hoelbling, C., Katz, S.D., Krieg, S., Szabo, K.K.: Full result for the QCD equation of state with 2+1 flavors. Phys. Lett. B730, 99 (2014)

    ADS  Google Scholar 

  135. HotQCD Collaboration, Bazavov, A., Bhattacharya, T., DeTar, C., Ding, H.-T., Gottlieb, S., Gupta, R., Hegde, P., Heller, U.M., Karsch, F., Laermann, E., Levkova, L., Mukherjee, S., Petreczky, P., Schmidt, C., Schroeder, C., Soltz R.A., Soeldner, W., Sugar, R., Wagner, M., Vranas, P.: The equation of state in 2+1-Flavor QCD, e-Print: arXiv:1407.6387 (2014)

  136. PHENIX Collaboration, Adler, S.S. et al.: Systematic studies of the centrality and \(\sqrt{s_{NN}}\) dependence of the \(dE_T /d\eta \) and \(dN_{ch}/d\eta \) in heavy ion collisions at mid-rapidity. Phys. Rev. C 71, 034908 (2005)

  137. CMS Collaboration, Chatrchyan, S. et al.: Measurement of the pseudorapidity and centrality dependence of the transverse energy density in Pb-Pb collisions at \(\sqrt{s_{NN}}=2.76\) TeV. Phys. Rev. Lett. 109, 152303 (2012)

  138. PHENIX Collaboration, Enhanced production of direct photons in Au + Au collisions at \(\sqrt{s_{NN}}=200\) GeV and implications for the initial temperature. Phys. Rev. Lett. 104, 132301 (2010)

  139. Wilde, M., for ALICE Collaboration. Measurement of direct photons in pp and Pb–Pb collisions with ALICE. arXiv.1210.5958 (2012)

  140. Andronica, A., Braun-Munzinger, P., Stachel, J.: Thermal hadron production in relativistic nuclear collisions: the hadron mass spectrum, the horn, and the QCD phase transition. Phys. Lett. B 673, 142 (2009)

    ADS  Google Scholar 

  141. Kovtun, P., Son, D.T., Starinets, A.O.: Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005)

    ADS  Google Scholar 

  142. Nakamura, A., Sakai, S.: Lattice study of gluon viscosities: a step towards RHIC physics. Acta Phys. Polon. B 37, 3371 (2006)

    ADS  Google Scholar 

  143. Meyer, H.B.: A calculation of the shear viscosity in SU(3) gluodynamics. Phys. Rev. D 76, 101701(R) (2007)

    ADS  Google Scholar 

  144. Stephanov, M., Rajagopal, K., Shyuriak, E.: Event-by-event fluctuations in heavy ion collisions and the QCD critical point. Phys. Rev. D 60, 114028 (1999)

    ADS  Google Scholar 

  145. Ejiri, S., Karsch, F., Redlich, K.: Hadronic fluctuations at the QCD phase transition. Phys. Lett. B 633, 275 (2006)

    ADS  Google Scholar 

  146. Karsch, F.: Determination of freeze-out conditions from lattice QCD calculations. Central Eur. J. Phys. 10, 1234 (2012)

    ADS  Google Scholar 

  147. Bazavov, A., Ding, H.-T., Hegde, P., Kaczmarek, O., Karsch, F., Laermann, E., Mukherjee, S., Petreczky, P., Schmidt, C., Smith, D., Soeldner, W., Wagner, M.: Freeze-out conditions in heavy ion collisions from QCD thermodynamics. Phys. Rev. Lett. 109, 192302 (2012)

    ADS  Google Scholar 

  148. Borsanyi, S., Fodor, Z., Katz, S.D., Krieg, S., Ratti, C., Szabo, K.K.: Freeze-out parameters from electric charge and baryon number fluctuations: is there consistency? Phys. Rev. Lett. 113, 052301 (2014)

    ADS  Google Scholar 

  149. Fodor, Z., Katz, S.D.: A new method to study lattice QCD at finite temperature and chemical potential. Phys. Lett. B 534, 87 (2002)

  150. Fodor, Z., Katz, S.D.: Lattice determination of the critical point of QCD at finite T and \(\mu \). JHEP 0203, 014 (2002)

  151. Roberge, A., Weiss, N.: Gauge theories with imaginary chemical potential and the phases of QCD. Nucl. Phys. B 275, 734 (1986)

    ADS  Google Scholar 

  152. de Forcrand, P., Philipsen, O.: The QCD phase diagram for small densities from imaginary chemical potential. Nucl. Phys. B 642, 290 (2002)

    ADS  MATH  Google Scholar 

  153. Allton, C.R., Ejiri, S., Hands, S.J., Kaczmarek, O., Karsch, F., Laermann, E., Schmidt, C.: The equation of state for two flavor QCD at non-zero chemical potential. Phys. Rev. D 68, 014507 (2003)

    ADS  Google Scholar 

  154. Ejiri, S., Kanaya, K., Umeda, T.: Ab initio study of the thermodynamics of quantum chromodynamics on the lattice at zero and finite densities. PTEP 2012, 01A104 (2012)

    Google Scholar 

  155. Li, A., Alexandru, A., Liu, K.-F., Meng, X.: Finite density phase transition of QCD with \(N_f=4\) and \(N_f=2\) using canonical ensemble method. Phys. Rev. D 84, 071503 (2011)

    ADS  Google Scholar 

  156. Li, A., Alexandrou, A., Liu, K.F.: Critical point of Nf = 3 QCD from lattice simulations in the canonical ensemble. Phys. Rev. D 84, 071503 (2011)

    ADS  Google Scholar 

  157. Aarts, G., Stamatescu, I.-O.: Stochastic quantization at finite chemical potential. JHEP 0809, 018 (2008)

    MathSciNet  ADS  Google Scholar 

  158. Aarts, G., Seiler, E., Stamatescu, I.O.: The complex langevin method: when can It be trusted? Phys. Rev. D 81, 054508 (2010)

    ADS  Google Scholar 

  159. Sexty, D.: Simulating full QCD at non-zero density using the complex Langevin equation. Phys. Lett. B 729, 108 (2014)

  160. Mackenzie, P.B., Thacker, H.B.: Evidence against a stable Dibaryon from lattice QCD. Phys. Rev. Lett. 55, 2539 (1985)

    ADS  Google Scholar 

  161. Iwasaki, Y., Yoshié, T., Tsuboi, Y.: The H Dibaryon in lattice QCD. Phys. Rev. Lett. 60, 1371 (1988)

    ADS  Google Scholar 

  162. Fukugita, M., Kuramashi, Y., Mino, H., Okawa, M., Ukawa, A.: An exploratory study of nucleon-nucleon scattering lengths in lattice QCD. Phys. Rev. Lett. 73, 2176 (1994)

    ADS  Google Scholar 

  163. Fukugita, M., Kuramashi, Y., Okawa, M., Mino, H., Ukawa, A.: Hadron scattering lengths in lattice QCD. Phys. Rev. D 52, 3003 (1995)

    ADS  Google Scholar 

  164. Ishii, N., Aoki, S., Hatsuda, T.: The nuclear force from lattice QCD. Phys. Rev. Lett. 99, 022001 (2007)

    ADS  Google Scholar 

  165. Yamazaki, T., Kuramashi, Y., Ukawa, A.: (PACS-CS Collaboration), Helium nuclei in quenched lattice QCD. Phys. Rev. D 81, 111504 (2010)

    ADS  Google Scholar 

  166. Lax, P.D.: Chairman, report of the panel on Large Scale Computing in Science and Engineering, 1982 (scanned pdf file is found at http://www.pnl.gov/scales/docs/lax report1982.pdf)

Download references

Acknowledgments

I would like to thank Sinya Aoki, Norman Christ, Carleton De Tar, Zoltan Fodor, Shoji Hashimoto, Yoichi Iwasaki, Kazuyuki Kanaya, Frithjof Karsch, Andreas Kronfeld, Martin Lüscher, and Paul Mackenzie for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Ukawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ukawa, A. Kenneth Wilson and Lattice QCD. J Stat Phys 160, 1081–1124 (2015). https://doi.org/10.1007/s10955-015-1197-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1197-x

Keywords

Navigation