Skip to main content
Log in

Continuous Particles in the Canonical Ensemble as an Abstract Polymer Gas

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We revisit the expansion recently proposed by Pulvirenti and Tsagkarogiannis for a system of N continuous particles in the Canonical Ensemble. Under the sole assumption that the particles interact via a tempered and stable pair potential and are subjected to the usual free boundary conditions, we show the analyticity of the Helmholtz free energy at low densities and, using the Penrose tree graph identity, we establish a lower bound for the convergence radius which happens to be identical to the lower bound of the convergence radius of the virial series in the Grand Canonical ensemble established by Lebowitz and Penrose in 1964. We also show that the free energy can be written as a series in powers of the density whose k-th order coefficient coincides, modulo terms o(N)/N, with the k-th order virial coefficient divided by k+1, according to its expression in terms of the m-th order (with mk+1) simply connected cluster integrals first given by Mayer in 1942. We finally give an upper bound for the k-th order virial coefficient which slightly improves, at high temperatures, the bound obtained by Lebowitz and Penrose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdesselam, A., Rivasseau, V.: Tree forests and jungles: a botanical garden for cluster expansions in constructive physics. In: Proceedings, Palaiseau, France, 1994. Lecture Notes in Physics, vol. 446 (1995)

    Google Scholar 

  2. Bissacot, R., Fernández, R., Procacci, A.: On the convergence of cluster expansions for polymer gases. J. Stat. Phys. 139, 598–617 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Borgs, C.: Absence of zeros for the chromatic polynomial on bounded degree graphs. Comb. Probab. Comput. 15, 63–74 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bovier, A., Zahradník, M.: A simple inductive approach to the problem of convergence of cluster expansions of polymer models. J. Stat. Phys. 100, 765–778 (2000)

    Article  MATH  Google Scholar 

  5. Brydges, D.C.: A short cluster in cluster expansions. In: Osterwalder, K., Stora, R. (eds.) Critical Phenomena, Random Systems, Gauge Theories, pp. 129–183. Elsevier, Amsterdam (1984)

    Google Scholar 

  6. Brydges, D., Federbush, P.: A new form of the Mayer expansion in classical statistical mechanics. J. Math Phys. 19, 2064–2067 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  7. Cammarota, C.: Decay of correlations for infinite range interactions in unbounded spin systems. Commun. Math. Phys. 85, 517–528 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  8. Dobrushin, R.L.: Estimates of semiinvariants for the Ising model at low temperatures. In: Topics in Statistics and Theoretical Physics, Am. Math. Soc. Transl., vol. 177, pp. 59–81 (1996)

    Google Scholar 

  9. Dobrushin, R.L.: Perturbation methods of the theory of Gibbsian fields. In: Ecole d’Eté de Probabilités de Saint-Flour XXIV—1994. Lecture Notes in Mathematics, vol. 1648, pp. 1–66. Springer, Berlin–Heidelberg–New York (1996)

    Google Scholar 

  10. Fernández, R., Procacci, A.: Cluster expansion for abstract polymer models. New bounds from an old approach. Commun. Math. Phys. 274, 123–140 (2007)

    Article  ADS  MATH  Google Scholar 

  11. Fernández, R., Procacci, A.: Regions without complex zeros for chromatic polynomials on graphs with bounded degree. Comb. Probab. Comput. 17, 225–238 (2007)

    Google Scholar 

  12. Fernández, R., Procacci, A., Scoppola, B.: The analyticity region of the hard sphere gas. Improved bounds. J. Stat. Phys. 128(5), 1139–1143 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Gallavotti, G., Miracle-Solé, S.: Correlation functions for lattice systems. Commun. Math. Phys. 7, 274–288 (1968)

    Article  ADS  Google Scholar 

  14. Gallavotti, G., Miracle-Solé, S., Robinson, D.W.: Analyticity properties of a lattice gas. Phys. Lett. 25A, 493–494 (1967)

    ADS  Google Scholar 

  15. Groeneveld, J.: Two theorems on classical many-particle systems. Phys. Lett. 3, 50–51 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Gruber, C., Kunz, H.: General properties of polymer systems. Commun. Math. Phys. 22, 133–161 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  17. Jackson, B., Procacci, A., Sokal, A.D.: Complex zero-free regions at large |q| for multivariate Tutte polynomials (alias Potts-model partition functions) with general complex edge weights. J. Comb. Theory, Ser. B 103, 21–45 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jansen, S.: Mayer and virial series at low temperature. J. Stat. Phys. 147(4), 678–706 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Kirkwood, J.G.: The statistical mechanical theory of transport processes. J. Chem. Phys. 14, 180–201 (1946)

    Article  ADS  Google Scholar 

  20. Kotecký, R., Preiss, D.: Cluster expansion for abstract polymer models. Commun. Math. Phys. 103, 491–498 (1986)

    Article  ADS  MATH  Google Scholar 

  21. Kuna, T., Kondratiev, Yu.G., Da Silva, J.L.: Marked Gibbs measures via cluster expansion. Methods Funct. Anal. Topol. 4, 50–81 (1998)

    MATH  Google Scholar 

  22. Lebowitz, J.L., Penrose, O.: Convergence of virial expansions. J. Math. Phys. 7, 841–847 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  23. Malyshev, V.A.: Cluster expansions in lattice models of statistical physics and quantum theory of fields. Russ. Math. Surv. 35, 1–62 (1980)

    Article  Google Scholar 

  24. Mayer, J.E.: Contribution to statistical mechanics. J. Chem. Phys. 10, 629–643 (1942)

    Article  MathSciNet  ADS  Google Scholar 

  25. Mayer, J.E.: Integral equations between distribution functions of molecules. J. Chem. Phys. 15, 187–201 (1947)

    Article  ADS  Google Scholar 

  26. Mayer, J.E., Mayer, M.G.: Statistical Mechanics. Wiley/Chapman & Hall, London (1940)

    MATH  Google Scholar 

  27. Miracle-Solé, S.: On the convergence of cluster expansions. Physica A 279, 244–249 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  28. Nardi, F.R., Olivieri, E., Zahradník, M.: On the Ising model with strongly anisotropic external field. J. Stat. Phys. 97, 87–144 (1999)

    Article  ADS  MATH  Google Scholar 

  29. Pathria, R.K., Beale, P.D.: Statistical Mechanics, 3rd edn. Elsevier, Amsterdam (2011)

    MATH  Google Scholar 

  30. Pfister, Ch.-E.: Large deviation and phase separation in the two-dimensional Ising model. Helv. Phys. Acta 64, 953–1054 (1991)

    MathSciNet  Google Scholar 

  31. Penrose, O.: Convergence of fugacity expansions for fluids and lattice gases. J. Math. Phys. 4, 1312–1320 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Penrose, O.: The remainder in Mayer’s fugacity series. J. Math. Phys. 4, 1488–1495 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  33. Penrose, O.: Convergence of fugacity expansions for classical systems. In: Bak, A. (ed.) Statistical Mechanics: Foundations and Applications. Benjamin, New York (1967)

    Google Scholar 

  34. Poghosyan, S., Ueltschi, D.: Abstract cluster expansion with applications to statistical mechanical systems. J. Math. Phys. 50(5), 053509 (2009) (17 pp.)

    Article  MathSciNet  ADS  Google Scholar 

  35. Procacci, A.: Abstract polymer models with general pair interactions. J. Stat. Phys. 129, 171–188 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Procacci, A.: Erratum and addendum: “Abstract polymer models with general pair interactions”. J. Stat. Phys. 135, 779–786 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Procacci, A., Scoppola, B.: Polymer gas approach to N-body lattice systems. J. Stat. Phys. 96, 49–68 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Procacci, A., de Lima, B.N.B., Scoppola, B.: A remark on high temperature polymer expansion for lattice systems with infinite range pair interactions. Lett. Math. Phys. 45, 303–322 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pulvirenti, E., Tsagkarogiannis, D.: Cluster expansion in the canonical ensemble. Commun. Math. Phys. 316(2), 289–306 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Ruelle, D.: Correlation functions of classical gases. Ann. Phys. 5, 109–120 (1963)

    MathSciNet  ADS  Google Scholar 

  41. Ruelle, D.: Cluster property of the correlation functions of classical gases. Rev. Mod. Phys. 36, 580–584 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  42. Ruelle, D.: Statistical Mechanics: Rigorous Results. Benjamin, New York/Amsterdam (1969)

    MATH  Google Scholar 

  43. Seiler, E.: Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics. Lecture Notes in Physics, vol. 159. Springer, Berlin–Heidelberg–New York (1982)

    Google Scholar 

  44. Sokal, A.D.: Bounds on the complex zeros of (di)chromatic polynomials and Potts-model partition functions. Comb. Probab. Comput. 10, 41–77 (2001)

    MathSciNet  MATH  Google Scholar 

  45. Ueltschi, D.: Cluster expansions and correlation functions. Mosc. Math. J. 4, 511–522 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank two anonymous referees for their careful and patient reading of the manuscript and for their helpful comments. Aldo Procacci has been partially supported by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do estado de Minas Gerais (FAPEMIG—Programa de Pesquisador Mineiro).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Procacci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morais, T., Procacci, A. Continuous Particles in the Canonical Ensemble as an Abstract Polymer Gas. J Stat Phys 151, 830–849 (2013). https://doi.org/10.1007/s10955-013-0731-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0731-y

Keywords

Navigation