Skip to main content
Log in

Global Migration Can Lead to Stronger Spatial Selection than Local Migration

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The outcome of evolutionary processes depends on population structure. It is well known that mobility plays an important role in affecting evolutionary dynamics in group structured populations. But it is largely unknown whether global or local migration leads to stronger spatial selection and would therefore favor to a larger extent the evolution of cooperation. To address this issue, we quantify the impacts of these two migration patterns on the evolutionary competition of two strategies in a finite island model. Global migration means that individuals can migrate from any one island to any other island. Local migration means that individuals can only migrate between islands that are nearest neighbors; we study a simple geometry where islands are arranged on a one-dimensional, regular cycle. We derive general results for weak selection and large population size. Our key parameters are: the number of islands, the migration rate and the mutation rate. Surprisingly, our comparative analysis reveals that global migration can lead to stronger spatial selection than local migration for a wide range of parameter conditions. Our work provides useful insights into understanding how different mobility patterns affect evolutionary processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lebowitz, J.L., Penrose, O.: Cluster and percolation inequalities for lattice systems with interactions. J. Stat. Phys. 16, 321–337 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  2. De Masi, A., Ferrari, P.A., Lebowitz, J.L.: Reaction-diffusion equations for interacting particle systems. J. Stat. Phys. 44, 589–644 (1986)

    Article  ADS  MATH  Google Scholar 

  3. Maynard-Smith, J., Szathmáry, E.: The Major Transitions in Evolution. Oxford University Press, New York (1998)

    Google Scholar 

  4. Nowak, M.A.: Evolutionary Dynamics. Harvard University Press, Cambridge (2006)

    MATH  Google Scholar 

  5. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006)

    Article  ADS  Google Scholar 

  6. Doebeli, M., Hauert, C.: Models of cooperation based on the Prisoner’s Dilemma and the Snowdrift game. Ecol. Lett. 8, 748–766 (2005)

    Article  Google Scholar 

  7. Nowak, M.A.: Evolving cooperation. J. Theor. Biol. 299, 1–18 (2012)

    Article  Google Scholar 

  8. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591–646 (2009)

    Article  ADS  Google Scholar 

  9. Axelrod, R., Hamilton, W.D.: The evolution of cooperation. Science 211, 1390–1396 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Szabó, G., Töke, C.: Evolutionary prisoner’s dilemma game on a square lattice. Phys. Rev. E 58, 69 (1998)

    Article  ADS  Google Scholar 

  11. Abramson, G., Kuperman, M.: Social games in a social network. Phys. Rev. E 63, 030901 (2001)

    Article  ADS  Google Scholar 

  12. Szabó, G., Hauert, C.: Phase transitions and volunteering in spatial public goods games. Phys. Rev. Lett. 89, 118101 (2002)

    Article  ADS  Google Scholar 

  13. Traulsen, A., Röhl, T., Schuster, H.G.: Stochastic gain in population dynamics. Phys. Rev. Lett. 93, 028701 (2004)

    Article  ADS  Google Scholar 

  14. Santos, F.C., Pacheco, J.M.: Scale-free networks provide a unifying framework for the emergence of cooperation. Phys. Rev. Lett. 95, 098104 (2005)

    Article  ADS  Google Scholar 

  15. Hauert, C., Szabó, G.: Game theory and physics. Am. J. Phys. 73, 405–414 (2005)

    Article  ADS  MATH  Google Scholar 

  16. Gomez-Gardenes, J., Campillo, M., Floria, L.M., Moreno, Y.: Dynamical organization of cooperation in complex topologies. Phys. Rev. Lett. 98, 108103 (2007)

    Article  ADS  Google Scholar 

  17. Ohtsuki, H., Nowak, M.A., Pacheco, J.M.: Breaking the symmetry between interaction and replacement in evolutionary dynamics on graphs. Phys. Rev. Lett. 98, 108106 (2007)

    Article  ADS  Google Scholar 

  18. Roca, C.P., Cuesta, J.A., Sánchez, A.: Evolutionary game theory: temporal and spatial effects beyond replicator dynamics. Phys. Life Rev. 6, 208–249 (2009)

    Article  ADS  Google Scholar 

  19. Galla, T.: Intrinsic noise in game dynamical learning. Phys. Rev. Lett. 103, 198702 (2009)

    Article  ADS  Google Scholar 

  20. Arenas, A., Camacho, J., Cuesta, J., Requejo, R.: The joker effect: cooperation driven by destructive agents. J. Theor. Biol. 279, 113–119 (2011)

    Article  MathSciNet  Google Scholar 

  21. Black, A.J., Traulsen, A., Galla, T.: Mixing times in evolutionary game dynamics. Phys. Rev. Lett. 109, 028101 (2012)

    Article  ADS  Google Scholar 

  22. Szabó, G., Fáth, G.: Evolutionary games on graphs. Phys. Rep. 446, 97–216 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  23. Maynard-Smith, J., Price, G.R.: The logic of animal conflict. Nature 246, 15–18 (1973)

    Article  Google Scholar 

  24. Maynard-Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge, UK (1982)

    Book  Google Scholar 

  25. Weibull, J.W.: Evolutionary Game Theory. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  26. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge, UK (1998)

    Book  MATH  Google Scholar 

  27. Frank, S.A.: Foundations of Social Evolution. Princeton University Press, Princeton (1998)

    Google Scholar 

  28. Cressman, R.: Evolutionary Dynamics and Extensive Form Games. MIT Press, Cambridge (2003)

    MATH  Google Scholar 

  29. Skyrms, B.: The Stag Hunt and the Evolution of Social Structure. Cambridge University Press, Cambridge, UK (2003)

    Book  Google Scholar 

  30. Kimura, M.: Evolutionary rate at the molecular level. Nature 217, 624–626 (1968)

    Article  ADS  Google Scholar 

  31. Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK (1983)

    Book  Google Scholar 

  32. Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature 433, 312–316 (2005)

    Article  ADS  Google Scholar 

  33. Antal, T., Redner, S., Sood, V.: Evolutionary dynamics on degree-heterogeneous graphs. Phys. Rev. Lett. 96, 188014 (2006)

    Article  ADS  Google Scholar 

  34. Nowak, M.A., May, R.M.: Super infection and the evolution of parasite virulence. Proc. - Royal Soc., Biol. Sci. 255, 81–89 (1994)

    Article  Google Scholar 

  35. Pfeiffer, T., Schuster, S., Bonhoeffer, S.: Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504–507 (2001)

    Article  ADS  Google Scholar 

  36. Turner, P.E., Chao, L.: Prisoner’s dilemma in an RNA virus. Nature 398, 441–443 (1999)

    Article  ADS  Google Scholar 

  37. Taylor, P.D., Jonker, L.B.: Evolutionary stable strategies and game dynamics. Math. Biosci. 40, 145–156 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nowak, M.A., Sasaki, A., Taylor, C., Fudenberg, D.: Emergence of cooperation and evolutionary stability in finite populations. Nature 428, 646–650 (2004)

    Article  ADS  Google Scholar 

  39. Traulsen, A., Claussen, J.C., Hauert, C.: Coevolutionary dynamics: from finite to infinite populations. Phys. Rev. Lett. 95, 238701 (2005)

    Article  ADS  Google Scholar 

  40. Fudenberg, D., Nowak, M.A., Taylor, C., Imhof, L.A.: Evolutionary game dynamics in finite populations with strong selection and weak mutation. Theor. Popul. Biol. 70, 352–363 (2006)

    Article  MATH  Google Scholar 

  41. Altrock, P.M., Traulsen, A.: Deterministic evolutionary game dynamics in finite populations. Phys. Rev. E 80, 011909 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  42. Taylor, C., Fudenberg, D., Sasaki, A., Nowak, M.A.: Evolutionary game dynamics in finite populations. Bull. Math. Biol. 66, 1621–1644 (2004)

    Article  MathSciNet  Google Scholar 

  43. Imhof, L.A., Nowak, M.A.: Evolutionary game dynamics in a Wright-Fisher process. J. Math. Biol. 52, 667–681 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Traulsen, A., Pacheco, J.M., Nowak, M.A.: Pairwise comparison and selection temperature in evolutionary game dynamics. J. Theor. Biol. 246, 522–529 (2007)

    Article  MathSciNet  Google Scholar 

  45. Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)

    Article  ADS  Google Scholar 

  46. Nakamaru, M., Matsuda, H., Iwasa, Y.: The evolution of cooperation in a lattice structured population. J. Theor. Biol. 184, 65–81 (1997)

    Article  Google Scholar 

  47. van Baalen, M., Rand, D.A.: The unit of selection in viscous populations and the evolution of altruism. J. Theor. Biol. 193, 631–648 (1998)

    Article  Google Scholar 

  48. Hauert, C., Doebeli, M.: Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature 428, 643–646 (2004)

    Article  ADS  Google Scholar 

  49. Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M.A.: A simple rule for the evolution of cooperation on graphs and social networks. Nature 441, 502–505 (2006)

    Article  ADS  Google Scholar 

  50. Ohtsuki, H., Nowak, M.A.: Evolutionary games on cycles. Proc. R. Soc. B 273, 2249–2256 (2006)

    Article  Google Scholar 

  51. Grafen, A.: An inclusive fitness analysis of altruism on a cyclical network. J. Evol. Biol. 20, 2278–2283 (2007)

    Article  Google Scholar 

  52. Taylor, P.D., Day, T., Wild, G.: Evolution of cooperation in a finite homogeneous graph. Nature 447, 469–472 (2007)

    Article  ADS  Google Scholar 

  53. Antal, T., Ohtsuki, H., Wakeley, J., Taylor, P.D., Nowak, M.A.: Evolution of cooperation by phenotypic similarity. Proc. Natl. Acad. Sci. USA 106, 8597–8600 (2009)

    Article  ADS  Google Scholar 

  54. Tarnita, C.E., Antal, T., Ohtsuki, H., Nowak, M.A.: Evolutionary dynamics in set structured populations. Proc. Natl. Acad. Sci. USA 106, 8601–8604 (2009)

    Article  ADS  Google Scholar 

  55. Nathanson, C.G., Tarnita, C.E., Nowak, M.A.: Calculating evolutionary dynamics in structured populations. PLoS Comput. Biol. 5, e1000615 (2009)

    Article  MathSciNet  Google Scholar 

  56. Tarnita, C.E., Ohtsuki, H., Antal, T., Fu, F., Nowak, M.A.: Strategy selection in structured populations. J. Theor. Biol. 259, 570–581 (2009)

    Article  MathSciNet  Google Scholar 

  57. Fu, F., Nowak, M.A., Hauert, C.: Invasion and expansion of cooperators in lattice populations: prisoner’s dilemma vs. Snowdrift games. J. Theor. Biol. 266, 358–366 (2010)

    Article  MathSciNet  Google Scholar 

  58. Tarnita, C.E., Wage, N., Nowak, M.A.: Multiple strategies in structured populations. Proc. Natl. Acad. Sci. USA 108, 2334–2337 (2011)

    Article  ADS  Google Scholar 

  59. Allen, B., Nowak, M.A.: Evolutionary shift dynamics on a cycle. J. Theor. Biol. 311, 28–39 (2012)

    Article  MathSciNet  Google Scholar 

  60. Allen, B., Traulsen, A., Tarnita, C.E., Nowak, M.A.: How mutation affects evolutionary games on graphs. J. Theor. Biol. 299, 97–105 (2012)

    Article  MathSciNet  Google Scholar 

  61. van Veelen, M., García, J., Rand, D.G., Nowak, M.A.: Direct reciprocity in structured populations. Proc. Natl. Acad. Sci. USA 109, 9929–9934 (2012)

    Article  ADS  Google Scholar 

  62. van Veelen, M., Nowak, M.A.: Multi-player games on the cycle. J. Theor. Biol. 292, 116–128 (2012)

    Article  Google Scholar 

  63. Fu, F., Tarnita, C.E., Christakis, N.A., Wang, L., Rand, D.G., Nowak, M.A.: Evolution of in-group favoritism. Sci. Rep. 2, 460 (2012)

    Google Scholar 

  64. Nowak, M.A., Tarnita, C.E., Antal, T.: Evolutionary dynamics in structured populations. Philos. Trans. R. Soc. B 365, 19–30 (2010)

    Article  Google Scholar 

  65. Macy, M.W., Flache, A.: Learning dynamics in social dilemmas. Proc. Natl. Acad. Sci. USA 99, 7229–7236 (2002)

    Article  ADS  Google Scholar 

  66. Masuda, N., Ohtsuki, H.: A theoretical analysis of temporal difference learning in the iterated Prisoner’s Dilemma game. Bull. Math. Biol. 71, 1818–1850 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  67. Santos, F.C., Pacheco, J.M., Lenaerts, T.: Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc. Natl. Acad. Sci. USA 103, 3490–3494 (2006)

    Article  ADS  Google Scholar 

  68. Santos, F.C., Santos, M.D., Pacheco, J.M.: Social diversity promotes the emergence of cooperation in public goods games. Nature 454, 213–216 (2008)

    Article  ADS  Google Scholar 

  69. Szolnoki, A., Perc, M., Danku, Z.: Towards effective payoffs in the prisoner’s dilemma game on scale-free networks. Physica A 387, 2075–2082 (2008)

    Article  ADS  Google Scholar 

  70. Gracia-Lázaro, C., Ferrer, A., Ruiz, G., Tarancón, A., Cuesta, J.A., Sánchez, A., Moreno, Y.: Heterogeneous networks do not promote cooperation when humans play a Prisoner’s Dilemma. Proc. Natl. Acad. Sci. USA. doi:10.1073/pnas.1206681109 (2012)

    Google Scholar 

  71. Skyrms, B., Pemantle, R.: A dynamic model of social network formation. Proc. Natl. Acad. Sci. USA 97, 9340–9346 (2000)

    Article  ADS  MATH  Google Scholar 

  72. Ebel, H., Bornholdt, S.: Coevolutionary games on networks. Phys. Rev. E 66, 056118 (2002)

    Article  ADS  Google Scholar 

  73. Zimmermann, M.G., Eguíluz, V.M., San Miguel, M.: Coevolution of dynamical states and interactions in dynamic networks. Phys. Rev. E 69, 065102 (2004)

    Article  ADS  Google Scholar 

  74. Santos, F.C., Pacheco, J.M., Lenaerts, T.: Cooperation prevails when individuals adjust their social ties. PLoS Comput. Biol. 2, e140 (2006)

    Article  ADS  Google Scholar 

  75. Hanaki, N., Peterhansl, A., Dodds, P.S., Watts, D.J.: Cooperation in evolving social networks. Manag. Sci. 53, 1036–1050 (2007)

    Article  MATH  Google Scholar 

  76. Fu, F., Hauert, C., Nowak, M.A., Wang, L.: Reputation-based partner choice promotes cooperation in social networks. Phys. Rev. E 78, 026117 (2008)

    Article  ADS  Google Scholar 

  77. Du, F.Q., Fu, F.: Partner selection shapes the strategic and topological evolution of cooperation. Dyn. Games Appl. 1, 354–369 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  78. Perc, M., Szolnoki, A.: Coevolutionary games—A mini review. Biosystems 99, 109–125 (2010)

    Article  Google Scholar 

  79. Traulsen, A., Nowak, M.A.: Evolution of cooperation by multilevel selection. Proc. Natl. Acad. Sci. USA 103, 10952–10955 (2006)

    Article  ADS  Google Scholar 

  80. Wild, G., Traulsen, A.: The different limits of weak selection and the evolutionary dynamics of finite populations. J. Theor. Biol. 247, 382–390 (2007)

    Article  MathSciNet  Google Scholar 

  81. Antal, T., Traulsen, A., Ohtsuki, H., Tarnita, C.E., Nowak, M.A.: Mutation-selection equilibrium in games with multiple strategies. J. Theor. Biol. 258, 614–622 (2009)

    Article  MathSciNet  Google Scholar 

  82. Tarnita, C.E., Antal, T., Nowak, M.A.: Mutation-selection equilibrium in games with mixed strategies. J. Theor. Biol. 261, 50–57 (2009)

    Article  MathSciNet  Google Scholar 

  83. Sabeti, P.C., et al.: Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002)

    Article  ADS  Google Scholar 

  84. Nowak, M.A., Sigmund, K.: The evolution of stochastic strategies in the prisoner’s dilemma. Acta Appl. Math. 20, 247–265 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  85. Metz, J.A.J., Geritz, S.A.H., Meszena, G., Jacobs, F.J.A., van Heerwarden, J.S.: Adaptive dynamics,a geometrical study of the consequences of nearly faithful reproduction. In: van Strien, S.J., Verduyn Lunel, S.M. (eds.) Stochastic and Spatial Structures of Dynamical Systems. K. Ned. Akad. Van Wet. B, vol. 45, pp. 183–231. North-Holland, Amsterdam (1996)

    Google Scholar 

  86. Dieckmann, U., Law, R.: The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34, 579–612 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  87. Dieckmann, U., Law, R., Metz, J.A.J.: The Geometry of Ecological Interactions: Simplifying Spatial Complexity. Cambridge University Press, Cambridge, UK (2000)

    Book  Google Scholar 

  88. Reichenbach, T., Mobilia, M., Frey, E.: Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games. Nature 448, 1046–1049 (2007)

    Article  ADS  Google Scholar 

  89. Helbing, D., Yu, W.: The outbreak of cooperation among success-driven individuals under noisy conditions. Proc. Natl. Acad. Sci. USA 106, 3680–3685 (2009)

    Article  ADS  Google Scholar 

  90. Wu, T., Fu, F., Zhang, Y.L., Wang, L.: Expectation-driven migration promotes cooperation by group interactions. Phys. Rev. E 85, 066104 (2012)

    Article  ADS  Google Scholar 

  91. Kimura, M., Weiss, G.H.: The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49, 561–576 (1964)

    Google Scholar 

  92. Levin, S.A.: Dispersion and population interactions. Am. Nat. 108, 207–228 (1974)

    Article  Google Scholar 

  93. Boyd, R., Richerson, P.J.: The evolution of reciprocity in sizable groups. J. Theor. Biol. 132, 337–356 (1988)

    Article  MathSciNet  Google Scholar 

  94. Taylor, P.D.: Altruism in viscous populations: an inclusive fitness model. Evol. Ecol. 6, 352–356 (1992)

    Article  Google Scholar 

  95. Durrett, R., Levin, S.A.: The importance of being discrete (and spatial). Theor. Popul. Biol. 46, 363–394 (1994)

    Article  MATH  Google Scholar 

  96. Rousset, F.: Genetic Structure and Selection in Subdivided Populations. Princeton University Press, Princeton (2004)

    Google Scholar 

  97. Killingback, T., Bieri, J., Flatt, T.: Evolution in group-structured populations can resolve the tragedy of the commons. Proc. R. Soc. B 273, 1477–1481 (2006)

    Article  Google Scholar 

  98. Boyd, R., Richerson, P.J.: Voting with your feet: payoff biased migration and the evolution of group beneficial behavior. J. Theor. Biol. 257, 331–339 (2009)

    Article  MathSciNet  Google Scholar 

  99. He, Q., Mobilia, M., Täber, U.C.: Spatial rock-paper-scissors models with inhomogeneous reaction rates. Phys. Rev. E 82, 051909 (2010)

    Article  ADS  Google Scholar 

  100. Nowak, M.A., Tarnita, C.E., Wilson, E.O.: The evolution of eusociality. Nature 466, 1057–1062 (2010)

    Article  ADS  Google Scholar 

  101. Hauert, C., Imhof, L.: Evolutionary games in deme structured, finite populations. J. Theor. Biol. 299, 106–112 (2011)

    Article  MathSciNet  Google Scholar 

  102. Maruyama, T.: Effective number of alleles in a subdivided population. Theor. Popul. Biol. 1, 273–306 (1970)

    Article  MathSciNet  Google Scholar 

  103. Maruyama, T.: Stepping stone models of finite length. Adv. Appl. Probab. 2, 229–258 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  104. Ohtsuki, H.: Evolutionary games in Wright’s island model: kin selection meets evolutionary game theory. Evolution 64, 3344–3353 (2010)

    Article  Google Scholar 

  105. Abbot, P., et al.: Inclusive fitness theory and eusociality. Nature 471, E1–E4 (2011)

    Article  ADS  Google Scholar 

  106. Nowak, M.A., Tarnita, C.E., Wilson, E.O.: Nowak, et al. reply. Nature 471, E9–E10 (2011)

    Article  ADS  Google Scholar 

  107. Nowak, M.A., Tarnita, C.E., Wilson, E.O.: A brief statement about inclusive fitness and eusociality. http://www.ped.fas.harvard.edu/IF_Statement.pdf/ (2011)

  108. Gammaitoni, L., Hanggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998)

    Article  ADS  Google Scholar 

  109. Ren, J., Wang, W.X., Qi, F.: Randomness enhances cooperation: a resonance-type phenomenon in evolutionary games. Phys. Rev. E 75, 045101 (2007)

    Article  ADS  Google Scholar 

  110. Szabó, G., Vukov, J., Szolnoki, A.: Phase diagrams for an evolutionary prisoner’s dilemma game on two-dimensional lattices. Phys. Rev. E 72, 047107 (2005)

    Article  ADS  Google Scholar 

  111. Vukov, J., Szabó, G., Szolnoki, A.: Cooperation in the noisy case: Prisoner’s dilemma game on two types of regular random graphs. Phys. Rev. E 74, 067103 (2006)

    Article  ADS  Google Scholar 

  112. Fu, F., Wu, T., Wang, L.: Partner switching stabilizes cooperation in coevolutionary Prisoner’s dilemma. Phys. Rev. E 79, 036101 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  113. Weiss, R.A., McMichael, J.A.: Social and environmental risk factors in the emergence of infectious diseases. Nat. Med. 10, S70–S76 (2004)

    Article  Google Scholar 

  114. Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439, 462–465 (2005)

    Article  ADS  Google Scholar 

  115. Wakeley, J.: Coalescent Theory: An Introduction. Roberts & Company Publishers, Greenwood Village (2008)

    Google Scholar 

Download references

Acknowledgements

We are grateful for support from the National Science Foundation/National Institute of Health joint program in mathematical biology (NIH grant no. R01GM078986), the Bill and Melinda Gates Foundation (Grand Challenges grant 37874), the National Institute on Aging (P01-AG031093) and the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Fu.

Appendix

Appendix

In this appendix, we present details for studying evolutionary competition of two strategies in finite islands with local migration. The case of global migration can be analyzed in a similar fashion.

Specifically, let us consider two binary strategies A and B with the 2×2 payoff matrix, which gives the payoff for the column player:

(11)

Denote by x A (x B ) the fraction of A (B) individuals, and we have x A +x B =1. Denote by \(x_{A}^{i}\) (\(x_{B}^{i}\)) the fraction of A (B) individuals in the site i, and we have \(\sum_{i = 1}^{M} x_{A}^{i} = x_{A}\) and \(\sum_{i = 1}^{M} x_{B}^{i} = x_{B}\). The interaction pattern of strategies is characterized by [I AA ,I AB ;I BA ,I BB ], where I XY denotes the total number of interactions between X and Y. By symmetry, we have I AB =I BA . The payoff of an A-individual is P A =(aI AA +bI AB )/(Nx A ) and its fitness is given by f A =exp(βP A ), where β denotes the intensity of selection.

Perturbation method has proved to be particularly useful for studying evolutionary dynamics in the limit of weak selection. Following previous practice [53, 56, 81], we can obtain the equilibrium fraction of A individuals (up to the first order of the selection strength β):

(12)

where F A and F B are the total payoff of A and B, respectively, and the subscript “0” indicates that 〈⋅〉 is averaged from all possible population configurations at neutrality with β=0.

Natural selection favors A over B if 〈x A 〉>1/2. This condition is equivalent to

(13)

which can further boil down to

(14)

At neutrality, the two types A and B act like different colors of individuals, and thus index permutations do not bring in any changes. We have 〈x B I AA 0=〈x A I BB 0 and 〈x B I AB 0=〈x A I BA 0. Therefore, we get the following σ-dominance condition for A to be favored [56]:

(15)

where the coefficient σ summarizes the spatial effect, and its formula can be given by [55]

(16)

For the simplified prisoner’s dilemma, cooperation is favored by selection if the benefit-to-cost ratio satisfies:

(17)

Substituting \(I_{AA} = N^{2} \sum_{i = 1}^{M} x_{A}^{i} x_{A}^{i}\), \(I_{AB} = N^{2} \sum_{i = 1}^{M} x_{A}^{i} x_{B}^{i}\) into the above inequality, we can obtain the critical \((\frac{b}{c} )^{*}\):

(18)

We note that for notational simplicity, we drop the sums and cancel the common factor N 2 in the above equation.

Using the symmetry condition under neutrality, we can further simplify the above condition. To be concrete, \(\langle x_{B} x_{A}^{i} x_{A}^{i} \rangle_{0} + \langle x_{B} x_{B}^{i} x_{A}^{i} \rangle_{0} = \langle x_{B} x_{*}^{i} x_{A}^{i} \rangle_{0} = \langle x_{B} x_{*}^{i} x_{*}^{i} \rangle_{0} - \langle x_{B} x_{B}^{i} x_{*}^{i} \rangle _{0}\), where \(x_{*}^{i}\) denotes the fraction of individuals in the site i. The first term \(\langle x_{B} x_{*}^{i} x_{*}^{i}\rangle_{0}\) can be interpreted as the probability that for three randomly chosen individuals, the first individual is a B strategist, and the second and the third are in the same site. The second term \(\langle x_{B} x_{B}^{i} x_{*}^{i} \rangle_{0}\) represents the probability that for three randomly chosen individuals, the first and the second individuals have the same B strategy while the second and the third belong to the same site. Using the fact that both strategies A and B are equally present in the population, \(\langle x_{B} x_{*}^{i} x_{*}^{i} \rangle_{0} - \langle x_{B} x_{B}^{i} x_{*}^{i} \rangle_{0}\) can be equivalently written as \(\frac{1}{2} \operatorname {Prob} \{G_{i} = G_{j} \} - \frac{1}{2} \operatorname {Prob} \{S_{i} = S_{j}, G_{j} = G_{k} \}\). In a similar way, \(\langle x_{B} x_{A}^{i} x_{A}^{i} \rangle_{0} - \langle x_{B} x_{B}^{i} x_{A}^{i} \rangle_{0} = \langle x_{A}^{i} x_{A}^{i} \rangle_{0} - \langle x_{A} x_{A}^{i} x_{A}^{i} \rangle_{0} - ( \langle x_{B} x_{B}^{i} x_{*}^{i}\rangle_{0} - x_{B} x_{B}^{i} x_{B}^{i}\rangle_{0} ) = \langle x_{A}^{i} x_{A}^{i} \rangle_{0} - \langle x_{B} x_{B}^{i} x_{*}^{i}\rangle_{0} = \frac{1}{2} \operatorname {Prob} \{S_{i} = S_{j}, G_{i} = G_{j} \} - \frac{1}{2} \operatorname {Prob} \{S_{i} = S_{j}, G_{j} = G_{k} \}\). Therefore we get the critical b/c ratio in the following form [53]:

(19)

where these pair/triplet correlations are taken at neutral evolution. The key for these calculations is to calculate \(\operatorname {Prob} \{G_{i} = G_{j} \}\), the probability that any two randomly individuals are from the same site.

To calculate these quantities using coalescent theory [115], it is useful to consider the rescaled mutation and migration rates, μ=Nu and ν=Nv.

Let us label the M sites from 0,…,M−1. Taking into accounting the fact that these sites are located at a regular ring with periodic boundary conditions, we can use an integer l∈(−∞,∞), computed modulo M, to denote an individual i’s site number G i as G i =l mod M. In this way, we can regard the migration of an individual between neighboring sites as an unbiased random walk on a one-dimensional plane with integer coordinates l∈(−∞,∞).

After their coalescence, the signed displacement at time τ, d=G i (τ)−G j (τ), between any randomly chosen two individuals i and j, follows the probability distribution

(20)

where I |d|(ντ) is the modified Bessel function of its first kind. It is easy to see that individuals i and j are in the same site if and only if d mod M=0. Thus, we can calculate the pair correlation \(\operatorname {Prob} \{G_{i} = G_{j} \}\) as follows:

(21)

\(\operatorname {Prob} \{S_{i} = S_{j}, G_{i} = G_{j} \}\) can be calculated as follows.

(22)

Calculating the remaining quantity \(\operatorname {Prob} \{S_{i} = S_{j}, G_{j} = G_{k} \}\) requires a little bit more work, but we are able to obtain the explicit expression (however, it is too tedious to be included here). Substituting these quantities into Eq. (19), we obtain the explicit formula for the critical b/c ratio.

For completeness, we show the explicit expression of the structural coefficient σ l =c 1/c 2 for the local migration case, where c 1 and c 2 are given by

(23)
(24)

For the global migration case, the formula for σ g can be given by

(25)

For low mutation and infinitely many sites, the above formulae for σ g and σ l can be greatly simplified

(26)
(27)

It is easy to check that σ l <σ g holds for any ν>0 in above equations. Therefore, for low mutation and infinitely many sites, global migration always leads to stronger spatial effect than local migration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, F., Nowak, M.A. Global Migration Can Lead to Stronger Spatial Selection than Local Migration. J Stat Phys 151, 637–653 (2013). https://doi.org/10.1007/s10955-012-0631-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0631-6

Keywords

Navigation