Skip to main content
Log in

On the Relativistic BGK-Boltzmann Model: Asymptotics and Hydrodynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The generalization of the BGK relaxation model to the special relativity setting is revisited here. We deal with several issues related to this relativistic kinetic model which seem to have been overlooked in the previous physical literature, including the unique determination of associated physical parameters, classical, ultra-relativistic and hydrodynamical limits, maximum entropy principles and the analysis of the linearized operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We use that the binomial series is alternate and the fact that when we truncate the series, the error term has the same sign as the first term that is discarded.

References

  1. Abramovitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1972)

    Google Scholar 

  2. Anderson, J.L., Witting, H.R.: A relativistic relaxational time model for the Boltzmann equation. Physica 74, 466–488 (1974)

    Article  ADS  Google Scholar 

  3. Andréasson, H.: The Einstein-Vlasov system/kinetic theory. Living Rev. Relativ. 8, 2 (2005). Published by the Max Planck Institute for Gravitational Physics, ISSN 1433-8351

    ADS  Google Scholar 

  4. Bagland, V., Degond, P., Lemou, M.: Moment systems derived from relativistic kinetic equations. J. Stat. Phys. 125, 621–659 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  5. Bardos, C., Golse, F., Levermore, D.: On asymptotic limits of kinetic theory leading to incompressible fluid dynamics. C. R. Acad. Sci. Paris Sér. I 309, 727–732 (1989)

    MathSciNet  MATH  Google Scholar 

  6. Bardos, C., Golse, F., Levermore, D.: Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Stat. Phys. 63, 323–344 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  7. Bardos, C., Golse, F., Levermore, D.: Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation. Commun. Pure Appl. Math. 46, 667–753 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bellouquid, A.: Global existence of BGK model for a gas with non constant cross section. Transp. Theory Stat. Phys. 32, 157–184 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Bellouquid, A.: On the asymptotic analysis of kinetic models towards the compressible Euler and acoustic equations. Math. Models Methods Appl. Sci. 14, 853–882 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  ADS  MATH  Google Scholar 

  11. Brey, J.J., Santos, A.: Solution of the BGK model kinetic equation for very hard particle interaction. J. Stat. Phys. 37, 123–149 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Caflisch, R.E.: The fluid dynamic limit of the nonlinear Boltzmann equation. Commun. Pure Appl. Math. 33(5), 651–666 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Caflisch, R.E., Papanicolaou, G.C.: The fluid dynamical limit of a nonlinear model Boltzmann equation. Commun. Pure Appl. Math. 32(5), 589–616 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Callen, H., Horwitz, G.: Relativistic thermodynamics. Am. J. Phys. 39, 938–947 (1971)

    Article  ADS  Google Scholar 

  15. Calogero, S.: The Newtonian limit of the relativistic Boltzmann equation. J. Math. Phys. 45, 4042–4052 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Calogero, S., Calvo, J., Sánchez, O., Soler, J.: Virial inequalities for steady states in relativistic galactic dynamics. Nonlinearity 23(8), 1851–1871 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Calogero, S., Sánchez, O., Soler, J.: Asymptotic behavior and orbital stability of galactic dynamics in relativistic scalar gravity. Arch. Ration. Mech. Anal. 194, 743–773 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Calvo, J.: On the hyperbolicity and causality of the relativistic Euler system under the kinetic equation of state. Commun. Pure Appl. Anal. 12(3) (2013). doi:10.3934/cpaa.2013.12

  19. Cercignani, C., Medeiros Kremer, G.: The Relativistic Boltzmann Equation: Theory and Applications. Birkhäuser, Berlin (2003)

    Google Scholar 

  20. Cercignani, C.: Speed of propagation of infinitesimal disturbances in a relativistic gas. Phys. Rev. Lett. 50(15), 1122–1124 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  21. Choquet-Bruhat, Y.: Theorem of uniqueness and local stability for Liouville-Einstein equations. J. Math. Phys. 11, 32–38 (1970)

    Article  MathSciNet  Google Scholar 

  22. Choquet-Bruhat, Y., Marsden, J.E.: Solution of the local mass problem in general relativity. Commun. Math. Phys. 51, 283–296 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Choquet-Bruhat, Y.: Probleme de Cauchy pour le systeme intégro-différentiel d’Einstein-Lioville. Ann. Inst. Fourier 21(3), 181–201 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  24. Christodoulou, D.: The Formation of Shocks in 3-Dimensional Fluids. EMS Monographs in Mathematics (2007)

    Book  MATH  Google Scholar 

  25. De Groot, S.R., van Leuwen, W.A., van Weert, Ch.G.: Relativistic Kinetic Theory. North Holland, Amsterdam (1980)

    Google Scholar 

  26. Drange, H.B.: The linearized Boltzmann collision operator for cut-off potentials. SIAM J. Appl. Math. 29, 665–676 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dudyński, M., Ekiel-Jeźewska, M.L.: On the linearized relativistic Boltzmann equation. I. Existence of solutions. Commun. Math. Phys. 115(4), 607–629 (1985)

    Article  ADS  Google Scholar 

  28. Ellis, R.S., Pinsky, M.A.: The first and the second fluid approximations to the linearized Boltzmann equations. J. Math. Pures Appl. 54, 125 (1976)

    MathSciNet  Google Scholar 

  29. Glassey, R.T.: Global solutions to the Cauchy problem for the relativistic Boltzmann equation with near-vacuum data. Commun. Math. Phys. 264, 705–724 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Glassey, R.T., Strauss, W.: Asymptotic stability of the relativistic Maxwellian. Transp. Theory Stat. Phys. 24, 657–678 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Grad, H.: Principles of the kinetic theory of gases. In: Flügge, S. (ed.) Thermodynamik der Gase. Handbuch der Physik, vol. 12, pp. 205–294. Springer, Berlin (1958)

    Google Scholar 

  32. Guo, Y., Strain, R.M.: Stability of the relativistic Maxwellian in a collisional plasma. Commun. Math. Phys. 251(2), 263–320 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Guo, Y., Strain, R.M.: Almost exponential decay near Maxwellian. Commun. Partial Differ. Equ. 31, 417–429 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hayward, S.A.: Unified first law of black-hole dynamics and relativistic thermodynamics. Class. Quantum Gravity 15, 3147–3162 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Israel, W.: Relativistic kinetic theory of a simple gas. J. Math. Phys. 4, 1163 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  36. Israel, W., Stewart, J.M.: Progress in relativistic thermodynamics and electrodynamics of continuous media. In: Held, A. (ed.) General Relativity and Gravitation, p. 491. Henum Press, New York (1980). Sect. 5

    Google Scholar 

  37. Jüttner, F.: Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie. Ann. Phys. 339(5), 856–882 (1911)

    Article  Google Scholar 

  38. Jüttner, F.: Die relativische Quantentheorie des idealen Gases. Z. Phys. 47, 542–566 (1928)

    Article  ADS  MATH  Google Scholar 

  39. Kunik, M., Qamar, S., Warnecke, G.: Second-order accurate kinetic schemes for the ultra-relativistic Euler equations. J. Comput. Phys. 192, 695–726 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Kunik, M., Qamar, S., Warnecke, G.: Kinetic schemes for the relativistic gas dynamics. Numer. Math. 97, 159–191 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Course of Theoretical Physics, vol. 2, 4th edn. Butterworth Heinemann, Oxford (1995)

    Google Scholar 

  42. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Course of Theoretical Physics, vol. 6. Pergamon, Elmsford (1987)

    MATH  Google Scholar 

  43. Liboff, R.L., Liboff, R.C.: Kinetic Theory: Classical, Quantum and Relativistic Descriptions. Springer, Berlin (2003)

    Google Scholar 

  44. Lichnerowicz, A., Marrot, R.: Proprietés statistiques des ensembles de particulesen relativité restreinte. C. R. Acad. Sci. Paris 210, 759–761 (1940)

    MathSciNet  Google Scholar 

  45. Majorana, A.: Relativistic relaxation models for a simple gas. J. Math. Phys. 31(8), 2042–2046 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Marle, C.: Sur l’établissement des equations de l’hydrodynamique des fluides relativistes dissipatifs, I. L’equation de Boltzmann relativiste. Ann. Inst. Henri Poincaré 10, 67–127 (1969)

    MathSciNet  Google Scholar 

  47. Marle, C.: Sur l’établissement des equations de l’hydrodynamique des fluides relativistes dissipatifs. II. Méthodes de résolution approchée de l’equation de Boltzmann relativiste. Ann. Inst. Henri Poincaré 10, 127–194 (1969)

    MathSciNet  Google Scholar 

  48. Marle, C.: Modele cinétique pour l’établissement des lois de la conduction de la chaleur et de la viscosité en théorie de la relativité. C. R. Acad. Sci. Paris 260, 6539–6541 (1965)

    MathSciNet  MATH  Google Scholar 

  49. Nishida, T.: Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equations. Commun. Math. Phys. 61(2), 119–148 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Nishida, T., Imai, L.: Global solutions to the initial value problem for the nonlinear Boltzmann equation. Publ. Res. Inst. Math. Sci. 12(1), 229–239 (1976/1977)

    Article  MathSciNet  Google Scholar 

  51. Perthame, B.: Global existence to the BGK model of the Boltzmann equation. J. Differ. Equ. 82, 191–205 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  52. Perthame, B.: The Kinetic Approach to Multidimensional Relativistic Gas Dynamics. Ser. Adv. Math. Appl. Sci., vol. 9. World Sci. Publ., River Edge (1992)

    Google Scholar 

  53. Perthame, B.: Kinetic Formulation of Conservation Laws. Oxford Lecture Series in Mathematics and Its Applications. Clarendon Press, Oxford (2002)

    MATH  Google Scholar 

  54. Rein, G.: The Vlasov-Einstein system with surface symmetry. Habilitationsschrift, München (1995)

  55. Saint-Raymond, L.: From Boltzmann’s kinetic theory to Euler’s equations. Physica D 237, 2028–2036 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Stewart, J.M.: Non-equilibrium Relativistic Kinetic Theory. Lecture Notes in Physics, vol. 10. Springer, Heidelberg (1971)

    Book  Google Scholar 

  57. Speck, J., Strain, R.M.: Hilbert expansion from the Boltzmann equation to relativistic fluids. Commun. Math. Phys. 304, 229–280 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. Strain, R.M.: Asymptotic stability of the relativistic Boltzmann equation for the soft potentials. Commun. Math. Phys. 300, 529–597 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. Strain, R.M.: Global Newtonian limit for the relativistic Boltzmann equation near vacuum. SIAM J. Math. Anal. 42, 1568–1601 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  60. Ukai, S.: On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proc. Jpn. Acad. 50, 179–184 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  61. Walker, A.G.: The principle of least action in Milne’s kinematical relativity. Edinburgh Math. Soc. 2, 238 (1934)

    Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Bert Janssen for fruitful discussions that helped us to improve the contents of this paper. This work was partially supported by Ministerio de Ciencia e Innovación (Spain), project MTM2011-23384. The first author was supported by Hassan II Academy of Sciences and Technology (Morocco). The second author is partially supported by a Juan de la Cierva grant of the Spanish MEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Soler.

Appendix

Appendix

The aim of this Appendix is to compute some of the various quantities involved in this paper in order to make it easier to follow. For the sake of simplicity, it is enough to perform these computations for the dimensionless quantities as in Sects. 4 and 5, assuming the scaling (22) or, equivalently, to assume m=c=ω=η=1.

1.1 A.1 Lorentz Invariance

Let Λ be a Lorentz boost (i.e. a linear isometry with respect to the Minkowsky metric) in \(\mathbb{R}_{q}^{4}\). As we are dealing with particles of unit rest mass (the so-called mass shell condition), this transformation Λ can be meaningfully seen as acting on \(\mathbb{R}_{{\mathbf{q}}}^{3}\). Given any distribution function f, we can define a new distribution function f Λ by means of

$$f_\varLambda(t,x,{\mathbf{q}}) = f(t,x,\varLambda{\mathbf{q}}). $$

As

$$ v_\mu z^\mu=( \varLambda v)_\mu(\varLambda z)^\mu\quad\mbox{for any}\ v, z\in\mathbb{R}^4, $$
(53)

we can check directly that n,e,p and σ are Lorentz invariant, i.e. \(n_{f} = n_{f_{\varLambda}}\) and so on, for any Lorentz boost Λ. Moreover, making use of the fact that the ratio \(\frac {d{\mathbf{q}}}{ q^{0} }\) is invariant under the action of Λ, we see that

This means that

$$u_{f_\varLambda} = \varLambda^{-1}u_f $$

(e.g. macroscopic boosts on the local velocity of the system are uniquely determined by the action of the same boosts—in a contravariant way—on the microscopic local velocities of the gas). The Lorentz invariance of the volume element \(\frac{d{\mathbf{q}}}{ q^{0}}\) shows also that β is Lorentz invariant, as the ratio

$$\frac{K_1(\beta)}{K_2(\beta)} = \frac{1}{n_f} \int_{\mathbb{R}^3} f \frac{d{\mathbf{q}}}{q^0} $$

is Lorentz invariant too. We summarize these facts as:

Lemma 8

Given any distribution function f, the scalar quantities \(n_{f_{\varLambda}}\), \(e_{f_{\varLambda}}\), \(p_{f_{\varLambda}}\), \(\sigma_{f_{\varLambda}}\) and \(\beta_{f_{\varLambda}}\) are Lorentz invariant. The vector u f transforms according to \(u_{f_{\varLambda}} = \varLambda^{-1}u_{f}\).

It is instructive to consider the special case in which the distribution function induces a local velocity that is found to be zero; that is, the physical objects that we are representing are at rest with respect to the reference frame that we use to describe them. This situation corresponds to distributions f having u f =(1,0,0,0)—Lorentz rest frame. It is useful to display formulae for the macroscopic quantities of the gas in this case, as the computations are simpler than in the general case and the results can be related to a generic distribution by means of Lorentz boosts. These read now:

(54)
(55)

1.2 A.2 Computation of the Moments of the Jüttner Equilibrium

We will need a more precise information about the moments of the relativistic Maxwellian. First we list for convenience some of them that can be easily computed in the Lorentz rest frame. Notice that in this case the Jüttner equilibrium reduces to

$$J(n,\beta,0;{\mathbf{q}})= \frac{n}{M(\beta)} \exp\bigl\{- \beta\sqrt {1 + |{ \mathbf{q}} |^2} \bigr\}. $$

For future reference we point that, using modified Bessel functions for the non-negative integer number j

$$K_j(\beta) = \int_0^\infty\cosh(jr) \exp\bigl\{-\beta \cosh(r)\bigr\}dr, $$

we can simplify some of the related formulae. For instance, we can write the function M(β) given in (5) as

$$ M(\beta)= \frac{4\pi}{ \beta} K_2(\beta). $$
(56)

To simplify the notation we will introduce the function Ψ defined as follows

$$ \varPsi(\beta)= \frac{3}{\beta} + \frac{K_1(\beta)}{K_2(\beta)}. $$
(57)

Lemma 9

Let J=J(n,β,0;q). Then, the following identities are verified:

  1. 1.

    \(\int_{\mathbb{R}^{3}} J d{\mathbf{q}}= n\),

  2. 2.

    \(\int_{\mathbb{R}^{3}} q^{i} J d{\mathbf{q}}= \int_{\mathbb{R}^{3}} q^{i} J \frac{d{\mathbf{q}}}{q^{0} } = 0\),

  3. 3.

    \(\int_{\mathbb{R}^{3}} |{\mathbf{q}}|^{2} J \frac{d{\mathbf{q}}}{q^{0} } = \frac{3 n}{\beta}\),

  4. 4.

    \(\int_{\mathbb{R}^{3}} J \frac{d{\mathbf{q}}}{q^{0} } = \frac{n}{M(\beta)} \frac{4 \pi}{\beta} K_{1}(\beta)= n \frac {K_{1}(\beta)}{K_{2}(\beta)}\),

  5. 5.

    \(\int_{\mathbb{R}^{3}} \sqrt{1 + |{\mathbf{q}}|^{2}} J d{\mathbf{q}}= n \varPsi(\beta)\).

Proof

The first relation follows from the very definition of M(β), and the second one just by a symmetry argument. To obtain the third one, we use integration by parts:

The fourth relation is a consequence of the following identity

$$\int_{\mathbb{R}^3} \frac{e^{-\beta\sqrt{1 + |{\mathbf {q}}|^2}}}{\sqrt{1 + |{\mathbf{q}} |^2}} d{\mathbf{q}}= 4 \pi\int _0^\infty r^2 \frac{e^{-\beta\sqrt{1 + r^2}}}{\sqrt{1 + r^2}} dr = \frac{4 \pi}{\beta}K_1(\beta). $$

The sum of the third and fourth relations yields the fifth one by using (59). □

The moments of the Jüttner distribution in general form can be obtained thanks to the following classical decomposition (see [42] for instance):

Lemma 10

The energy-momentum tensor T μν can be expressed as:

$$T^{\mu\nu}= \int_{\mathbb{R}^3} q^\mu q^\nu f \frac{d{\mathbf {q}}}{ q^0 }=-p_{f} g^{\mu\nu}+ (e_{f}+p_{f})u^\mu u^\nu. $$

Then all the moments of a given f that appear as components of T μν can be computed once we have the values of p f and e f . This can be combined with Lemma 8, which ensures that it suffices to compute the local energy and pressure in the Lorentz rest frame. These two are given by formulae (56) and (57).

For the special case of f=J we can go further as the computations in formulae (56) and (57) were already carried in Lemma 9. Then we get the following result.

Lemma 11

The quantities e J and p J are given by

$$e_{J}=n\varPsi(\beta), \qquad p_{J}= \frac{n}{\beta}. $$

Using the standard physical units,

$$e_{J}=c^2 n\varPsi(\beta), \qquad p_{J}= c^2 \frac{n}{\beta}. $$

A direct application of the program sketched above yields then

Lemma 12

Given any Jüttner distribution J, the following relations hold true:

  1. 1.

    \(\int_{\mathbb{R}^{3}} q^{\mu}J \frac{d{\mathbf{q}}}{q^{0}} = n u^{\mu}\),

  2. 2.

    \(\int_{\mathbb{R}^{3}} |{\mathbf{q}}|^{2} J \frac{d{\mathbf{q}}}{q^{0}} = e_{J} |{\mathbf{u}}|^{2} + p_{J} (3 + |{\mathbf{u}}|^{2}) =n \varPsi(\beta)|{\mathbf{u}}|^{2} + (3 + |{\mathbf {u}}|^{2})\frac{n}{\beta}\),

  3. 3.

    \(\int_{\mathbb{R}^{3}} \sqrt{1 + |{\mathbf{q}}|^{2}} J d{\mathbf{q}}= p_{J} |{\mathbf{u}}|^{2} + e_{J} (1 + |{\mathbf{u}}|^{2}) = \frac{n}{\beta}|{\mathbf{u}}|^{2} + n \varPsi(\beta ) (1 + |{\mathbf{u}}|^{2})\),

  4. 4.

    \(\int_{\mathbb{R}^{3}} q^{i} J d{\mathbf{q}}= (e_{J} +p_{J})\sqrt{1 + |{\mathbf{u}}|^{2}} u^{i} = (n \varPsi(\beta) + \frac{n}{\beta} ) \sqrt{1 + |{\mathbf {u}}|^{2}} u^{i}\),

  5. 5.

    \(\int_{\mathbb{R}^{3}} J \frac{d{\mathbf{q}}}{q^{0}} = e_{J} - 3 p_{J}= n ( \varPsi (\beta) - \frac{3}{\beta} ) = n \frac{K_{1}(\beta)}{K_{2}(\beta)}\).

Proof

The first point follows from the definition of u μ in terms of N μ. For the remaining ones, we just take recourse on Lemma 10. From there we get that

This is to be combined with Lemma 11. To conclude, we notice that

$$\int_{\mathbb{R}^3} J \frac{d{\mathbf{q}}}{q^0 } = \int_{\mathbb{R}^3} \bigl(\bigl(q^0\bigr)^2 - |{\mathbf{q}}|^2 \bigr) J \frac{d{\mathbf{q}}}{q^0} $$

and the last relation follows. □

1.3 A.3 Entropy Fluxes

We can compute also the entropy densities and fluxes of the Jüttner equilibrium, which are used to obtain information in the hydrodynamical limit, thanks to the H-theorem.

Lemma 13

The following identities are verified:

(58)
(59)

Proof

Using Lemma 10 we get

$$\int_{\mathbb{R}^3} \frac{q^i {\mathbf{q}}\cdot{\mathbf{u}}}{q^0 }J d{\mathbf{q}}= u_j \bigl(p_{J} \delta^{ij} +(e_{J}+p_{J})u^i u^j\bigr)= u^i\bigl(p_{J}+(e_{J}+p_{J})|{ \mathbf{u}}|^2\bigr). $$

To prove (61), note that

and then using Lemma 12, items 1, 3 and 4 we obtain (61).

In the same way

and using Lemmas 11 and 12, items 1 and 4, combined with (60) we arrive to the last identity. This proves the lemma. □

1.4 A.4 Monotonicity of K 1/K 2

To begin with, let us recall the following recurrence relation:

$$ K_2(\beta)= \frac{2}{\beta} K_1(\beta) + K_0(\beta). $$
(60)

This can be used to show that

$$\frac{K_2(\beta)}{K_1(\beta)} \le\frac{2}{\beta}+1, $$

as K 0(β)<K 1(β). We also note that

(61)

which is strictly positive for β<2.

Next we analyze the case β≥2. For that we deal with the integral representations of the incomplete Bessel functions. Using the substitution x=sinh(s/2) we get

$$K_0(\beta)+K_1(\beta)= \int_0^\infty \bigl(1+\cosh(s)\bigr) e^{-\beta\cosh (s)} ds = 2 \int_0^\infty \frac{2+2x^2}{\sqrt{1+x^2}} e^{-\beta (1+2x^2)} dx. $$

By means of the inequalityFootnote 1

$$\frac{1}{\sqrt{1+x^2}}\ge1-\frac{x^2}{2}\quad\mbox{for}\ x>0 $$

we obtain the estimate

$$K_0(\beta)+K_1(\beta) \ge e^{-\beta} \frac{\sqrt{2 \pi}}{\sqrt {\beta}} \biggl(1+\frac{1}{8 \beta}-\frac{3}{32 \beta^2} \biggr). $$

Arguing in a similar way but using this time the inequality

$$\frac{1}{\sqrt{1+x^2}} \le1-\frac{x^2}{2} + \frac{3}{8}x^4 \quad \mbox{for}\ x>0 $$

we arrive to

$$K_0(\beta) \le e^{-\beta} \frac{\sqrt{2 \pi}}{2\sqrt{\beta}} \biggl(1- \frac{1}{8 \beta}+\frac{9}{128 \beta^2} \biggr). $$

Therefore

$$\frac{K_0(\beta) + K_1(\beta)}{K_0(\beta)} \ge\frac{256 \beta^2+32 \beta-24}{128 \beta^2 -16 \beta+ 9} $$

and

$$\frac{K_1(\beta)}{K_0(\beta)} \ge\frac{128 \beta^2+48 \beta -33}{128 \beta^2 -16 \beta+ 9}. $$

Notice that both the numerator and the denominator are positive for β≥2. This estimate can be used in combination with (62) to get

$$\frac{K_2(\beta)}{K_1(\beta)} \le\frac{128 \beta^3+240 \beta^2+105 \beta-66}{128 \beta^3+48 \beta^2-33 \beta}. $$

We plug this into (63) so that

Using that β≥2 we conclude with

$$\biggl(\frac{K_1(\beta)}{K_2(\beta)} \biggr)' \ge\frac{3 (6656 \beta^4 + 2419 \beta^3 +726)}{(128 \beta^3+240 \beta^2+105 \beta -66)^2} >0. $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellouquid, A., Calvo, J., Nieto, J. et al. On the Relativistic BGK-Boltzmann Model: Asymptotics and Hydrodynamics. J Stat Phys 149, 284–316 (2012). https://doi.org/10.1007/s10955-012-0600-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0600-0

Keywords

Navigation