Skip to main content
Log in

Rotating States in Driven Clock- and XY-Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider 3D active plane rotators, where the interaction between the spins is of XY-type and where each spin is driven to rotate. For the clock-model, when the spins take N≫1 possible values, we conjecture that there are two low-temperature regimes. At very low temperatures and for small enough drift the phase diagram is a small perturbation of the equilibrium case. At larger temperatures the massless modes appear and the spins start to rotate synchronously for arbitrary small drift. For the driven XY-model we prove that there is essentially a unique translation-invariant and stationary distribution despite the fact that the dynamics is not ergodic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acebrón, J.A., Bonilla, L.L., Pérez Vicente, C.J., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    Article  ADS  Google Scholar 

  2. Aizenman, M., Barsky, D.J., Fernández, R.: The phase transition in a general class of Ising-type models is sharp. J. Stat. Phys. 47, 343–374 (1987)

    Article  ADS  Google Scholar 

  3. Chassaing, P., Mairesse, J.: A non-ergodic probabilistic cellular automaton with a unique invariant measure. arXiv:1009.0143v2 [cs.FL]

  4. Diakonova, M., MacKay, R.S.: Mathematical examples of space-time phases. Int. J. Bifurc. Chaos (to appear)

  5. Dickman, R., Marro, J.: Nonequilibrium Phase Transitions in Lattice Models. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  6. Fröhlich, J., Pfister, C.-E.: Spin waves, vortices, and the structure of equilibrium states in the classical XY model. Commun. Math. Phys. 89, 303–327 (1983)

    Article  ADS  Google Scholar 

  7. Fröhlich, J., Spencer, T.: The Kosterlitz-Thouless transition in two-dimensional Abelian spin systems and the Coulomb gas. Commun. Math. Phys. 81, 527–602 (1981)

    Article  ADS  Google Scholar 

  8. Fröhlich, J., Simon, B., Spencer, T.: Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys. 50, 79–95 (1976)

    Article  ADS  Google Scholar 

  9. Fröhlich, J., Israel, R., Lieb, E.H., Simon, B.: Phase transitions and reflection positivity. I. General theory and long range lattice models. Commun. Math. Phys. 62, 1–34 (1978)

    Article  ADS  Google Scholar 

  10. Giacomin, G., Pakdaman, K., Pellegrin, X., Poquet, C.: Transitions in active rotator systems: invariant hyperbolic manifold approach. arXiv:1106.0758v1 [math-ph]

  11. Grinstein, G., Mukamel, D., Seidin, R., Bennett, C.H.: Temporally periodic phases and kinetic roughening. Phys. Rev. Lett. 70, 3607–3610 (1993)

    Article  ADS  Google Scholar 

  12. Holley, R.: Free energy in a Markovian model of a lattice spin system. Commun. Math. Phys. 23, 87–99 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Katz, S., Lebowitz, J.L., Spohn, H.: Phase transitions in stationary non-equilibrium states of model lattice systems. Phys. Rev. B 28, 1655–1658 (1983)

    Article  ADS  Google Scholar 

  14. Pfister, C.-E.: Translation invariant equilibrium states of ferromagnetic abelian lattice systems. Commun. Math. Phys. 86, 375–390 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  15. Pirogov, S.A., Sinai, Ya.G.: Phase diagrams of classical lattice systems. Theor. Math. Phys. 25, 358–369 (1975) 1185–1192

    Article  MathSciNet  Google Scholar 

  16. Rybko, A., Shlosman, S., Vladimirov, A.: Spontaneous resonances and the coherent states of the queuing networks. J. Stat. Phys. 134, 67–104 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Schmittman, B., Zia, R.K.P.: Statistical mechanics of driven diffusive systems. In: Domb, C., Zia, R.K.P., Schmittmann, B., Lebowitz, J.L. (series eds.) Statistical Mechanics of Driven Diffusive System. Phase Transitions and Critical Phenomena, vol. 17, pp. 3–214. Academic Press, San Diego (1995)

    Chapter  Google Scholar 

  18. Shlosman, S., Vignaud, Y.: Dobrushin interfaces via reflection positivity. Commun. Math. Phys. 276, 827–861 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Sinai, Ya.G.: Theory of Phase Transitions. Pergamon Press, London and Academia Kiado, Budapest (1982)

    MATH  Google Scholar 

  20. van Enter, A.C.D., Shlosman, S.B.: Provable first-order transitions for liquid crystal and lattice gauge models with continuous symmetries. Commun. Math. Phys. 255, 21–32 (2005)

    Article  ADS  MATH  Google Scholar 

  21. van Enter, A.C.D., Külske, C., Opoku, A.A.: Discrete approximations to vector spin models. arXiv:1104.4241v1 [math-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senya Shlosman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maes, C., Shlosman, S. Rotating States in Driven Clock- and XY-Models. J Stat Phys 144, 1238 (2011). https://doi.org/10.1007/s10955-011-0325-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-011-0325-5

Keywords

Navigation