Skip to main content
Log in

Dobrushin Interfaces via Reflection Positivity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the interfaces separating different phases of 3D systems by means of the Reflection Positivity method. We treat discrete non-linear sigma-models, which exhibit power-law decay of correlations at low temperatures, and we prove the rigidity property of the interface.

Our method is applicable to the Ising and Potts models, where it simplifies the derivation of some known results. The method also works for large-entropy systems of continuous spins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman M. (1994). On the slow decay of O(2) correlations in the absence of topological excitations: Remark on the Patrascioiu-Seiler model. J. Stat. Phys. 77: 351–359

    Article  MATH  MathSciNet  Google Scholar 

  2. Cerny J. and Kotecky R. (2003). Interfaces for random cluster models. J. Stat. Phys. 111: 73–106

    Article  MATH  MathSciNet  Google Scholar 

  3. Dobrushin R.L. (1972). Gibbs state, describing the coexistence of phases in the three-dimensional Ising model. Th. Prob. and its Appl. 17: 582–600

    Article  MATH  Google Scholar 

  4. Dobrushin R.L. and Shlosman S. (1981). Phases corresponding to the local minima of the energy. Selecta Math. Soviet. 1(4): 317–338

    MathSciNet  Google Scholar 

  5. Dold A. (1995). Lectures on Algebraic Topology. Springer, Berlin-Heidelberg-New York

    MATH  Google Scholar 

  6. Fröhlich J., Israel R., Lieb E. and Simon B. (1978). Phase transitions and reflection positivity I. Commun. Math. Phys. 62: 1–34

    Article  ADS  Google Scholar 

  7. Fröhlich J. and Lieb E.H. (1978). Phase transitions in anisotropic lattice spin systems. Commun. Math. Phys. 60(3): 233–267

    Article  ADS  Google Scholar 

  8. Fröhlich J. and Pfister C.-E. (1983). Spin waves, vortices and the structure of equilibrium states in the classical XY model. Commun. Math. Phys. 89: 303–327

    Article  ADS  Google Scholar 

  9. Frohlich J., Simon B. and Spencer T. (1976). Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys. 50: 79

    Article  ADS  MathSciNet  Google Scholar 

  10. Frohlich J. and Spencer T. (1981). The Kosterlitz- Thouless transition in two-dimensional Abelian spin systems and the Coulomb gas. Commun. Math. Phys. 81: 527–602

    Article  ADS  MathSciNet  Google Scholar 

  11. Grimmett, G.: Private communication

  12. Gielis G. and Grimmett G. (2002). Rigidity of the Interface in Percolation and Random-Cluster Models. J. Stat. Phys. 109(1–2): 1–37

    Article  MATH  MathSciNet  Google Scholar 

  13. Holicky P., Kotecky R. and Zahradnık M. (1988). Rigid interfaces for lattice models at low temperatures. J. Stat. Phys. 50: 755–812

    Article  MATH  Google Scholar 

  14. Kenyon R. (2001). Dominos and the Gaussian free field. Ann. Prob. 29(3): 1128–1137

    Article  MATH  MathSciNet  Google Scholar 

  15. Shlosman S. and van Enter A.C.D. (2002). First-Order Transitions for n-Vector Models in Two and More Dimensions: Rigorous Proof. Phys. Rev. Lett. 89: 285702

    Article  Google Scholar 

  16. Shlosman S. and van Enter A.C.D. (2005). Provable First-Order Transitions for Nonlinear Vector and Gauge Models with Continuous Symmetries. Commun. Math. Phys. 255(1): 21–32

    Article  MATH  ADS  Google Scholar 

  17. Shlosman S. (1986). The Method of Reflection Positivity in the Mathematical Theory of First-Order Phase Transitions. Russ. Math. Surv. 41(3): 83–134

    Article  MathSciNet  Google Scholar 

  18. Shlosman, S., Vignaud, Y.: Rigidity of the interface between low-energy and high-entropy phases. In preparation

  19. Vignaud, Y.: Entropic repulsion and entropic attraction. In preparation

  20. Vignaud, Y.: Rigidity of the interface for a continuous symmetry model in a slab. In preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvon Vignaud.

Additional information

Communicated by M. Aizenman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shlosman, S., Vignaud, Y. Dobrushin Interfaces via Reflection Positivity. Commun. Math. Phys. 276, 827–861 (2007). https://doi.org/10.1007/s00220-007-0308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0308-1

Keywords

Navigation