Skip to main content
Log in

The Langevin Limit of the Nosé-Hoover-Langevin Thermostat

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this note we study the asymptotic limit of large variance in a stochastically perturbed thermostat model, the Nosé-Hoover-Langevin device. We show that in this limit, the model reduces to a Langevin equation with one-dimensional Wiener process, and that the perturbation is in the direction of the conjugate momentum vector. Numerical experiments with a double well potential corroborate the asymptotic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bulgac, A., Kusnezov, D.: Canonical ensemble averages from pseudomicrocanonical dynamics. Phys. Rev. A 42, 5045–5048 (1990)

    Article  ADS  Google Scholar 

  2. Bussi, G., Parinello, M.: Stochastic thermostats: comparison of local and global schemes. Comput. Phys. Commun. 179, 26–29 (2008)

    Article  ADS  Google Scholar 

  3. Bussi, G., Donadio, D., Parinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007)

    Article  ADS  Google Scholar 

  4. Dubinkina, S., Frank, J., Leimkuhler, B.: Simplified modelling of a thermal bath, with application to a fluid vortex system. SIAM Multiscale Model. Simul. 8, 1882–1901 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Higham, D.J., Mao, X., Stuart, A.M.: Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40, 1041–1063 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hoover, W.: Canonical dynamics: equilibrium phase space distributions. Phys. Rev. A 31, 1695–1697 (1985)

    Article  ADS  Google Scholar 

  7. Khasminsky, R.Z.: On stochastic processes defined by differential equations with a small parameter. Theory Probab. Appl. 11, 211–228 (1966)

    Article  Google Scholar 

  8. Kurtz, T.G.: A limit theorem for perturbed operator semigroups with applications to random evolutions. J. Funct. Anal. 12, 55–67 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kurtz, T.G.: Limit theorems and diffusion approximations for density dependent Markov chains. Math. Program. Stud. 5, 67–78 (1976)

    Article  MathSciNet  Google Scholar 

  10. Kurtz, T.G.: Strong approximation theorems for density dependent Markov chains. Stoch. Process. Appl. 6, 223–240 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Leimkuhler, B., Noorizadeh, E., Theil, F.: A gentle stochastic thermostat for molecular dynamics. J. Stat. Phys. 135, 261–277 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Leimkuhler, B., Noorizadeh, E., Penrose, O.: Comparing the efficiencies of stochastic isothermal molecular dynamics methods. J. Stat. Phys. (2011, to appear)

  13. Legoll, F., Luskin, M., Moeckel, R.: Non-ergodicity of Nosé-Hoover thermostatted harmonic oscillator. Arch. Ration. Mech. Anal. 184, 449–463 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Legoll, F., Luskin, M., Moeckel, R.: Non-ergodicity of Nosé-Hoover dynamics. Nonlinearity 22, 1673–1694 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Mattingly, J.C., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stoch. Process. Appl. 101, 185–232 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nosé, S.: A molecular dynamics methods for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984)

    Article  ADS  Google Scholar 

  17. Nosé, S.: A unified formulation of the constant temperature molecular dynamics method. J. Chem. Phys. 81, 511–519 (1984)

    Article  ADS  Google Scholar 

  18. Papanicolaou, G.C.: Introduction to the asymptotic analysis of stochastic equations. In: DiPrima, R.C. (ed.) Modern Modeling of Continuum Phenomena. AMS, Providence (1974)

    Google Scholar 

  19. Pavliotis, G.A., Stuart, A.M.: Multiscale Methods—Averaging and Homogenization. Texts in Applied Mathematics, vol. 53. Springer, New York (2008)

    MATH  Google Scholar 

  20. Samoletov, A., Chaplain, M.A.J., Dettmann, C.P.: Thermostats for “slow” configurational modes. J. Stat. Phys. 128, 1321–1336 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Givon, D., Kupferman, R., Stuart, A.: Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17, R55–R127 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Frank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, J., Gottwald, G.A. The Langevin Limit of the Nosé-Hoover-Langevin Thermostat. J Stat Phys 143, 715–724 (2011). https://doi.org/10.1007/s10955-011-0203-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0203-1

Keywords

Navigation