Skip to main content
Log in

Kinetic mixed Ising system in the presence of a periodically varying external magnetic field: effective-field theory with Glauber-type stochastic dynamic for the magnetic properties

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

By using the effective-field theory based on the Glauber-type stochastic dynamics, we discuss the dynamic magnetic properties of the mixed-spin (3/2, 2) configuration in an oscillating magnetic field on the interpenetrating square lattices. The dynamic magnetic hysteresis cycles are given for different values of crystal-field, temperature and angular frequency. The dynamic phase diagrams are depicted to better understand the effect of the physical parameters on the phase transitions of the system. The system can present interesting dynamic magnetic features, which come from competition among several parameters. Finally, we plot the coercive field and remanent magnetization of the system under the influences of physical parameters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References

  1. L. Nèel, Ann. Phys. (N.Y) 3 (1948) 137.

  2. C.J. Thompson, Mathematical statistical mechanics (Princeton University Press, New Jersey, 1992)

    Google Scholar 

  3. J. Strečka, M. Jaščur, Acta Phys. Slovaca 65, 235 (2015). (and references therein)

    Google Scholar 

  4. K. Hashimoto, S. Ohkoshi, Philos. Trans. R. Soc. Lond. A 357, 2977 (1999)

    Article  ADS  Google Scholar 

  5. B. Nmaila, K. Htoutou, L.B. Drissi, and R. Ahl Laamara, Solid State Commun. 336, 114418 (2021)

    Article  Google Scholar 

  6. K.-Le Shi, W. Jiang, W.-Fan Qin, J. Meng, and F.-Ge Zhang, Physica E 134 (2021) 114920

  7. Qi Li, R.-dong Li, W. Wang, R.-ze Geng, H. Huang, and S.-juan Zheng, Physica A 555 (2020) 124741.

  8. W. Wang, L. Sun, R.-dong Li, Z.-yue Gao, F. Wang, and M. Tian, Results in Physics, 19 (2020) 103573,

  9. N. Zaim, O. Amhoud, A. Zaim, M. Kerouad, Solid State Commun. 293, 15–22 (2019)

    Article  ADS  Google Scholar 

  10. A. Jabar, A. Belhaj, H. Labrim, L. Bahmad, N. Hassanain, A. Benyoussef, Superlattice. Microstructures 78, 171 (2015)

    Article  Google Scholar 

  11. B. Deviren, Y. Polat, M. Keskin, Chin. Phys. B 20, 060507 (2011)

    Article  Google Scholar 

  12. E. Albayrak, Phys. B 391, 47 (2007)

    Article  ADS  Google Scholar 

  13. M. Keskin, Y. Polat, J. Magn. Magn. Mater. 321, 3905 (2009)

    Article  ADS  Google Scholar 

  14. M. Keskin, Y. Koçak, Commun. Theor. Phys. 69, 741 (2018)

    Article  ADS  Google Scholar 

  15. M. Keskin, M. Ertaş, J Supercond Nov. Magn. 30, 3439 (2017)

    Article  Google Scholar 

  16. Ü. Temizer, M. Tülek, S. Yarar, Phys. A 415, 156 (2014)

    Article  MathSciNet  Google Scholar 

  17. G.T. Landi, J. Magn. Magn. Mater. 324, 466 (2012)

    Article  ADS  Google Scholar 

  18. H. El Mrabti, P.M. Dejardin, S.V. Titov, Y.P. Kalmykov, Phys. Rev. B 85, 094425 (2012)

    Article  ADS  Google Scholar 

  19. B. Ourai, S.V. Titov, H. El Mrabti, and Y.P. Kalmykov, J. Appl. Phys. 113 (2013) 053903.

  20. Y. Yüksel, Phys. Lett. A 377, 2494 (2013)

    Article  ADS  Google Scholar 

  21. E. Vatansever, H. Polat, Thin Films 589, 789 (2015)

    Google Scholar 

  22. M. Batı, M. Ertaş, Physica B 513, 40 (2017)

    Article  ADS  Google Scholar 

  23. M. Batı, Mod. Phys. Lett. B 33, 30 (2019)

    Article  MathSciNet  Google Scholar 

  24. D. Kuang, P. Tang, S. Yang, Y. Zhang, J. Magn. Magn. Mater. 397, 33 (2016)

    Article  ADS  Google Scholar 

  25. W.Y. Lee, A. Samed, T.A. Moore, J.A.C. Bland, B.C. Choi, J. Appl. Phys. 87, 6600 (2000)

    Article  ADS  Google Scholar 

  26. T.A. Moore, G. Wastlbauer, J. A. C. Blanda, E. Cambril, M. Natali, D. Decanini and Y. Chen J. Appl. Phys. 93 (2003) 8746.

  27. M. Prester, I. Zivkovic, D. Drobac, V. Surija, D. Pajic, H. Berger, Phys. Rev. B 84, 064441 (2011)

    Article  ADS  Google Scholar 

  28. M. Batı, J. Supercond Nov Magn 31, 821 (2018)

    Article  Google Scholar 

  29. M. Ertaş, B. Deviren, M. Keskin, J. Magn. Magn. Mater. 324, 704 (2012)

    Article  ADS  Google Scholar 

  30. M. Ertaş, Y. Kocakaplan, M. Keskin, J. Magn. Magn. Mater. 348, 113 (2013)

    Article  ADS  Google Scholar 

  31. R. Honmura, T. Kaneyoshi, J. Phys. C: Solid State Phys. 12, 399 (1979)

    Article  Google Scholar 

  32. T. Kaneyoshi, I.P. Fittipaldi, R. Honmura, T. Manabe, Phys. Rev. B 24, 481 (1981)

    Article  ADS  Google Scholar 

  33. B. Deviren, M. Keskin, J. Magn. Magn. Mater. 324, 1051 (2012)

    Article  ADS  Google Scholar 

  34. M. Ertaş, M. Keskin, B. Deviren, J. Stat. Phys. 146, 1244 (2012)

    Article  ADS  Google Scholar 

  35. M. Ertaş, M. Keskin, Phys. Lett A 379, 1576 (2015)

    Article  ADS  Google Scholar 

  36. M. Ertaş, M. Batı, Ü. Temizer, Chin. J. Phys. 56, 807 (2018)

    Article  Google Scholar 

  37. J.S. Suen, M.H. Lee, G. Teeter, J.L. Erskine, Phys. Rev. B 59, 4249 (1999)

    Article  ADS  Google Scholar 

  38. T. A. Moore, J. Rothman. Y.B.Xu, J.A.C. Bland, J. Appl. Phys. 89 (2001) 7018.

  39. J.S. Suen, J.L. Erskine, Phys. Rev. Lett. 18, 3567 (1997)

    Article  ADS  Google Scholar 

  40. B.S. Paratala, B.D. Jacobson, S. Kanakia, L.D. Francis, B. Sitharaman, Plus One 7, e38185 (2012)

    Article  ADS  Google Scholar 

  41. Y. Liu, N. Tang, X. Wan, Q. Feng, M. Li, Q. Xu, F. Liu, Y. Du, Sci. Rep. 3, 2566 (2013)

    Article  ADS  Google Scholar 

  42. H.S.S.R. Matte, K.S. Subrahmanyam, C.N.R. Rao, J. Phys. Chem. C 113, 9982 (2009)

    Article  Google Scholar 

  43. C.T. Fleace, I. Morjan, R. Alexandrescu, F. Dumitrache, I. Soare, I. Gavrilla-Florescu, F.I. Normand, A. Derory, Appl. Surf. Sci. 255, 5386 (2009)

    Article  ADS  Google Scholar 

  44. G. Kamalakar, D.W. Hwang, L.P. Hwang, J. Mater. Chem. 12, 1819 (2002)

    Article  Google Scholar 

  45. C.-S. Chen, T.-G. Liu, X.-H. Chen, L.-W. Lin, Q.-C. Liu, Q-Xia, Z.-W. Ning, Trans. Nonferr. Met. Soc. China 19 (2009) 1567.

  46. A. Garcia, E. Bertran, L. Elbaile, J. Garcia-Cespedes, A. Svalov, Phys. Status Solidi c 7, 2679 (2010)

    Article  ADS  Google Scholar 

  47. Curiale, R.D. Sanchez, H.E. Troiani, A.G. Leyva, P. Levy, Appl. Phys. Lett. 87 (2005) 043113.

  48. J. Sort, B. Dieny, M. Fraune, C. Koenig, F. Lunnebach, B. Beschoten, G. Güntherodt, Appl. Phys. Lett. 84, 3696 (2004)

    Article  ADS  Google Scholar 

  49. Y.Z. Zang, J. Magn. Magn. Mater. 321, L15 (2009)

    Article  Google Scholar 

  50. Y. Hu, ADu. Liu, Phys. Status Solidi B 247, 972 (2010)

    Article  ADS  Google Scholar 

  51. M. Wesselinowa, J. Magn. Magn. Mater. 322, 234 (2010)

    Article  ADS  Google Scholar 

  52. M. Batı, M. Ertaş, J. Supercond Nov Magn 29, 2835 (2016)

    Article  Google Scholar 

  53. E. Kantar, M. Ertaş, J. Supercond Nov Magn 28, 2529 (2015)

    Article  Google Scholar 

  54. V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogues, Nature 423, 850 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ümüt Temizer.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Appendix

Appendix

The Van der Waerden coefficients \(A\left( \alpha \right)\), \(B\left( \alpha \right)\), \(C\left( \alpha \right)\) and \(D\left( \alpha \right)\) for spin-2 in Eq. 2 and \(K\left( \alpha \right)\), \(L\left( \alpha \right)\), \(M\left( \alpha \right)\) and \(N\left( \alpha \right)\) for spin-3/2 in Eq. (3) are

$$ A\left( \alpha \right) = \frac{1}{6}\left[ {8\sinh \left( \alpha \right) - \sinh \left( {2\alpha } \right)} \right],{\kern 1pt} \quad K\left( \alpha \right) = \frac{1}{8}\left[ {9\cosh \left( {\frac{\alpha }{2}} \right) - \cosh \left( {\frac{3\alpha }{2}} \right)} \right], $$
$$ B\left( \alpha \right) = \frac{1}{12}\left[ {16\cosh \left( \alpha \right) - \cosh \left( {2\alpha } \right) - 15} \right],\quad L\left( \alpha \right) = \frac{1}{12}\left[ {27\sinh \left( {\frac{\alpha }{2}} \right) - \sinh \left( {\frac{3\alpha }{2}} \right)} \right], $$
$$ C\left( \alpha \right) = \frac{1}{6}\left[ {\sinh \left( {2\alpha } \right) - 2\sinh \left( \alpha \right)} \right],\;{\text{and}}\quad M\left( \alpha \right) = \frac{1}{2}\left[ { - \cosh \left( {\frac{\alpha }{2}} \right) + \cosh \left( {\frac{3\alpha }{2}} \right)} \right], $$
$$ D\left( \alpha \right) = \frac{1}{12}\left[ {\cosh \left( {2\alpha } \right) - 4\cosh \left( \alpha \right) + 3} \right],\quad N\left( \alpha \right) = \frac{1}{3}\left[ { - 3\sinh \left( {\frac{\alpha }{2}} \right) + \sinh \left( {\frac{3\alpha }{2}} \right)} \right]. $$

given as follows:

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ertaş, M., Temizer, Ü. Kinetic mixed Ising system in the presence of a periodically varying external magnetic field: effective-field theory with Glauber-type stochastic dynamic for the magnetic properties. Eur. Phys. J. Plus 137, 1202 (2022). https://doi.org/10.1140/epjp/s13360-022-03394-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03394-z

Navigation