Skip to main content
Log in

How Gibbs Distributions May Naturally Arise from Synaptic Adaptation Mechanisms. A Model-Based Argumentation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper addresses two questions in the context of neuronal networks dynamics, using methods from dynamical systems theory and statistical physics: (i) How to characterize the statistical properties of sequences of action potentials (“spike trains”) produced by neuronal networks? and; (ii) what are the effects of synaptic plasticity on these statistics? We introduce a framework in which spike trains are associated to a coding of membrane potential trajectories, and actually, constitute a symbolic coding in important explicit examples (the so-called gIF models). On this basis, we use the thermodynamic formalism from ergodic theory to show how Gibbs distributions are natural probability measures to describe the statistics of spike trains, given the empirical averages of prescribed quantities. As a second result, we show that Gibbs distributions naturally arise when considering “slow” synaptic plasticity rules where the characteristic time for synapse adaptation is quite longer than the characteristic time for neurons dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adrian, E., Zotterman, Y.: The impulses produced by sensory nerve endings: Part II: The response of a single end organ. J. Physiol. (Lond.) 61, 151–71 (1926)

    Google Scholar 

  2. Amit, D.J.: Modeling Brain Function—the World of Attractor Neural Networks. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  3. Arabzadeh, E., Panzeri, S., Diamond, M.: Deciphering the spike train of a sensory neuron: Counts and temporal patterns in the rat whisker pathway. J. Neurosci. 26(36), 9216–9226 (2006)

    Article  Google Scholar 

  4. Artola, A., Bröcher, S., Singer, W.: Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347(6288), 69–72 (1990)

    Article  ADS  Google Scholar 

  5. Barbieri, R., Frank, L.M., Nguyen, D.P., Quirk, M.C., Wilson, M.A., Brown, E.N.: Dynamic analyses of information encoding in neural ensembles. Neural Comput. 16, 277–307 (2004)

    Article  MATH  Google Scholar 

  6. Beck, C., Schloegl, F.: Thermodynamics of Chaotic Systems: An Introduction. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  7. Bi, G., Poo, M.: Synaptic modification by correlated activity: Hebb’s postulate revisited. Ann. Rev. Neurosci. 24, 139–166 (2001)

    Article  Google Scholar 

  8. Bienenstock, E.L., Cooper, L., Munroe, P.: Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2(1), 32–48 (1982)

    Google Scholar 

  9. Blanchard, P., Cessac, B., Krueger, T.: What can one learn about self-organized criticality from dynamical system theory? J. Stat. Phys. 98, 375–404 (2000)

    Article  MATH  Google Scholar 

  10. Bliss, T., Gardner-Medwin, A.: Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetised rabbit following stimulation of the perforant path. J. Physiol. 232, 357–374 (1973)

    Google Scholar 

  11. Bohte, S.M., Mozer, M.C.: Reducing the variability of neural responses: a computational theory of spike-timing-dependent plasticity. Neural Comput. 19(2), 371–403 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, vol. 470. Springer, New York (1975)

    MATH  Google Scholar 

  13. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Revised Version. Springer, New York (2008)

    Google Scholar 

  14. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005)

    Article  Google Scholar 

  15. Cessac, B.: Does the complex susceptibility of the Hénon map have a pole in the upper-half plane? A numerical investigation. Nonlinearity 20, 2883–2895 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Cessac, B.: A discrete time neural network model with spiking neurons. Rigorous results on the spontaneous dynamics. J. Math. Biol. 56(3), 311–345 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cessac, B., Samuelides, M.: From neuron to neural networks dynamics. EPJ Spec. Top. Top. Dyn. Neural Netw. 142(1), 7–88 (2007)

    Google Scholar 

  18. Cessac, B., Viéville, T.: On dynamics of integrate-and-fire neural networks with adaptive conductances. Front. Neurosci. 2(2) (2008)

  19. Cessac, B., Blanchard, P., Krueger, T., Meunier, J.: Self-organized criticality and thermodynamic formalism. J. Stat. Phys. 115(516), 1283–1326 (2004)

    Article  MATH  ADS  Google Scholar 

  20. Cessac, B., Vasquez, J., Viéville, T.: Parametric estimation of spike train statistics (2009, submitted)

  21. Chazottes, J.: Entropie relative, dynamique symbolique et turbulence. Unpublished doctoral dissertation, Université de Provence—Aix Marseille I (1999)

  22. Chazottes, J., Floriani, E., Lima, R.: Relative entropy and identification of Gibbs measures in dynamical systems. J. Stat. Phys. 90(3–4), 697–725 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Chazottes, J., Keller, G.: Pressure and equilibrium states in ergodic theory. In: Ergodic Theory. Springer, New York (2009)

    Google Scholar 

  24. Chechik, G.: Spike-timing-dependent plasticity and relevant mutual information maximization. Neural Comput. 15(7), 1481–1510 (2003)

    Article  MATH  Google Scholar 

  25. Collet, P., Galves, A., Lopez, A.: Maximum likelihood and minimum entropy identification of grammars. Random Comput. Dyn. 3(3/4), 241–250 (1995)

    MATH  Google Scholar 

  26. Comets, F.: Detecting phase transition for Gibbs measures. Ann. Appl. Probab. 7(2), 545–563 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Cooper, L., Intrator, N., Blais, B., Shouval, H.: Theory of Cortical Plasticity. World Scientific, Singapore (2004)

    MATH  Google Scholar 

  28. Cronin, J.: Mathematical Aspects of Hodgkin-Huxley Theory. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  29. Daucé, E., Quoy, M., Cessac, B., Doyon, B., Samuelides, M.: Self-organization and dynamics reduction in recurrent networks: stimulus presentation and learning. Neural Netw. 11, 521–33 (1998)

    Article  Google Scholar 

  30. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  31. Dayan, P., Hausser, M.: In: Thrun, S., Saul, L., Schoelkopf, B. (eds.) Plasticity Kernels and Temporal Statistics, vol. 16. MIT Press, Cambridge (2004)

    Google Scholar 

  32. Delorme, A., Perrinet, L., Thorpe, S.: Networks of integrate-and-fire neurons using rank order coding b: spike timing dependent plasticity and emergence of orientation selectivity. Neurocomputing 38(40), 539–45 (2001)

    Article  Google Scholar 

  33. Dudek, S., Bear, M.F.: Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J. Neurosci. 13(7), 2910–2918 (1993)

    Google Scholar 

  34. FitzHugh, R.: Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 17, 257–278 (1955)

    Article  Google Scholar 

  35. FitzHugh, R.: Impulses and physiological states in models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  ADS  Google Scholar 

  36. Gao, Y., Kontoyiannis, I., Bienenstock, E.: Estimating the entropy of binary time series: methodology, some theory and a simulation study. Entropy 10(2), 71–99 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  37. Georgeopoulos, A.P., Merchant, H., Naselaris, T., Amirikian, B.: Mapping of the preferred direction in the motor cortex. PNAS 104(26), 11068–11072 (2007)

    Article  ADS  Google Scholar 

  38. Georgopoulos, A., Kalaska, J., Caminiti, R., Massey, J.: On the relations between the direction of two-dimensional arm movements and cell discharge in primary motor cortex. J. Neurosci. 2, 1527–1537 (1982)

    Google Scholar 

  39. Gerstner, W., Kistler, W.: Spiking Neuron Models. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  40. Gerstner, W., Kistler, W.M.: Mathematical formulations of Hebbian learning. Biol. Cybern. 87, 404–415 (2002)

    Article  MATH  Google Scholar 

  41. Grammont, F., Riehle, A.: Precise spike synchronization in monkey motor cortex involved in preparation for movement. Exp. Brain Res. 128, 118–122 (1999)

    Article  Google Scholar 

  42. Grammont, F., Riehle, A.: Spike synchronization and firing rate in a population of motor cortical neurons in relation to movement direction and reaction time. Biol. Cybern. 88, 360–373 (2003)

    Article  MATH  Google Scholar 

  43. Guckenheimer, J., Labouriau, I.S.: Bifurcation of the Hodgkin-Huxley equations: a new twist. Bull. Math. Biol. 55, 937–952 (1993)

    MATH  Google Scholar 

  44. Hebb, D.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)

    Google Scholar 

  45. Hirsch, M.: Convergent activation dynamics in continuous time networks. Neural Netw. 2, 331–349 (1989)

    Article  Google Scholar 

  46. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  47. Izhikevich, E.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  48. Izhikevich, E.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15(5), 1063–1070 (2004)

    Article  Google Scholar 

  49. Izhikevich, E., Desai, N.: Relating stdp to bcm. Neural Comput. 15, 1511–1523 (2003)

    Article  MATH  Google Scholar 

  50. Jaynes, E.: Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  51. Ji, C.: Estimating functionals of one-dimensional Gibbs states. Probab. Theory Relat. Fields 82(2), 155–175 (1989)

    Article  MATH  Google Scholar 

  52. Johnson, D.: Sensory discrimination: neural processes preceding discrimination decision. J. Neurophysiol. 4(6), 1793–1815 (1980)

    Google Scholar 

  53. Johnson, D.: Neural population structure and consequences for neural coding. J. Comput. Neurosci. 16(1), 69–80 (2004)

    Article  Google Scholar 

  54. Jolivet, R., Rauch, A., Lescher, H.R., Gerstner, W.: Integrate-and-Fire Models with Adaptation Are Good Enough. MIT Press, Cambridge (2006)

    Google Scholar 

  55. Kang, K., Amari, S.I.: Discrimination with spike times and isi distributions. Neural Comput. 20, 1411–1426 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  56. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Kluwer Academic, Dordrecht (1998)

    Google Scholar 

  57. Keller, G.: Equilibrium States in Ergodic Theory. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  58. Levy, W., Stewart, D.: Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8(4), 791–797 (1983)

    Article  Google Scholar 

  59. Malenka, R.C., Nicoll, R.A.: Long-term potentiation—a decade of progress? Science 285(5435), 1870–1874 (1999)

    Article  Google Scholar 

  60. von-der Malsburg, C.: Self-organisation of orientation sensitive cells in the striate cortex. Kybernetik 14, 85–100 (1973)

    Article  Google Scholar 

  61. Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic ap and epsp. Science 275, 213 (1997)

    Article  Google Scholar 

  62. Meyer, D.: The Ruelle-Araki Transfer Operator in Classical Statistical Mechanics. Lecture Notes in Physics, vol. 123. Springer, Berlin (1980)

    Google Scholar 

  63. Miller, K., Keller, J., Stryker, M.: Ocular dominance column development: analysis and simulation. Science 245(4918), 605–615 (1989)

    Article  ADS  Google Scholar 

  64. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)

    Article  Google Scholar 

  65. Nemenman, I., Lewen, G., Bialek, W., de Ruyter van Steveninck, R.: Neural coding of a natural stimulus ensemble: Information at sub-millisecond resolution. PLoS Comput. Biol. 4, e1000025 (2006)

    Article  Google Scholar 

  66. Nirenberg, S., Latham, P.: Decoding neuronal spike trains: how important are correlations. Proc. Nat. Acad. Sci. 100(12), 7348–7353 (2003)

    Article  ADS  Google Scholar 

  67. Osbone, L., Palmer, S., Lisberger, S., Bialek, W.: Combinatorial coding in neural populations. arXiv:0803.3837 (2008)

  68. Parry, W., Pollicott, M.: Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics, vols. 187–188. Asterisque (1990)

  69. Perrinet, L., Delorme, A., Samuelides, M., Thorpe, S.: Networks of integrate-and-fire neuron using rank order coding a: how to implement spike time dependent Hebbian plasticity. Neurocomputing 38 (2001)

  70. Rao, R., Sejnowski, T.J.: In: Solla, S., Leen, T., Muller, K. (eds.) Predictive Sequence Learning in Recurrent Neocortical Circuits, vol. 12. MIT Press, Cambridge (1991)

    Google Scholar 

  71. Rao, R., Sejnowski, T.J.: Spike-timing-dependent Hebbian plasticity as temporal difference learning. Neural Comput. 13(10), 2221–2237 (2001)

    Article  MATH  Google Scholar 

  72. Rieke, F., Warland, D., de Ruyter van Steveninck, R., Bialek, W.: Spikes, Exploring the Neural Code. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  73. Rostro-Gonzalez, H., Cessac, B., Vasquez, J., Viéville, T.: Back-engineering of spiking neural networks parameters. J. Comput. Neurosci. (2009, submitted)

  74. Rudolph, M., Destexhe, A.: Analytical integrate and fire neuron models with conductance-based dynamics for event driven simulation strategies. Neural Comput. 18, 2146–2210 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  75. Ruelle, D.: Statistical Mechanics: Rigorous Results. Benjamin, New York (1969)

    MATH  Google Scholar 

  76. Ruelle, D.: Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95, 393–468 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  77. Samuelides, M., Cessac, B.: Random recurrent neural networks. Eur. Phys. J., Spec. Top. 142, 7–88 (2007)

    Article  Google Scholar 

  78. Schneidman, E., Berry, M., Segev, R., Bialek, W.: Weak pairwise correlations imply string correlated network states in a neural population. Nature 440, 1007–1012 (2006)

    Article  ADS  Google Scholar 

  79. Sinanović, A., Johnson, D.: Toward a theory of information processing. Signal Process. 87(6), 1326–1344 (2007)

    Article  Google Scholar 

  80. Siri, B., Berry, H., Cessac, B., Delord, B., Quoy, M.: Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons. J. Physiol. Paris 101(1–3), 138–150 (2007). arXiv:0706.2602

    Google Scholar 

  81. Siri, B., Berry, H., Cessac, B., Delord, B., Quoy, M.: A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks. Neural Comput. 20(12), 12 (2008). arXiv:0705.3690v1

    Article  MathSciNet  Google Scholar 

  82. Soula, H.: Dynamique et plasticité dans les réseaux de neurones à impulsions. Unpublished doctoral dissertation, INSA Lyon (2005)

  83. Soula, H., Beslon, G., Mazet, O.: Spontaneous dynamics of asymmetric random recurrent spiking neural networks. Neural Comput. 18, 1 (2006)

    Article  MathSciNet  Google Scholar 

  84. Soula, H., Chow, C.C.: Stochastic dynamics of a finite-size spiking neural networks. Neural Comput. 19, 3262–3292 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  85. Theunissen, F., Miller, J.: Temporal encoding in nervous systems: a rigorous definition. J. Comput. Neurosci. 2, 149–162 (1995)

    Article  Google Scholar 

  86. Tkacik, G., Schneidman, E., Berry, M., Bialek, W.: Ising models for networks of real neurons. arXiv:q-bio/0611072 (2006)

  87. Touboul, J.: Bifurcation analysis of a general class of nonlinear integrate-and-fire neurons. SIAM J. Appl. Math. 68(4), 1045–1079 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  88. Toyoizumi, T., Pfister, J.-P., Aihara, K., Gerstner, W.: Generalized Bienenstock-Cooper-Munroe rule for spiking neurons that maximizes information transmission. Proc. Nat. Acad. Sci. 102, 5239–5244 (2005)

    Article  ADS  Google Scholar 

  89. Toyoizumi, T., Pfister, J.-P., Aihara, K., Gerstner, W.: Optimality model of unsupervised spike-timing dependent plasticity: synaptic memory and weight distribution. Neural Comput. 19, 639–671 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  90. Wood, F., Roth, S., Black, M.: Modeling neural population spiking activity with Gibbs distributions. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems, vol. 18, pp. 1537–1544. MIT Press, Cambridge (2006)

    Google Scholar 

  91. Zou, Q.: Modèles computationnels de la plasticité impulsionnelle: synapses, neurones et circuits. Unpublished doctoral dissertation, Université Paris VI (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Cessac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cessac, B., Rostro, H., Vasquez, J.C. et al. How Gibbs Distributions May Naturally Arise from Synaptic Adaptation Mechanisms. A Model-Based Argumentation. J Stat Phys 136, 565–602 (2009). https://doi.org/10.1007/s10955-009-9786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9786-1

Keywords

Navigation