Skip to main content
Log in

Not to Normal Order—Notes on the Kinetic Limit for Weakly Interacting Quantum Fluids

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The derivation of the Nordheim-Boltzmann transport equation for weakly interacting quantum fluids is a longstanding problem in mathematical physics. Inspired by the method developed to handle classical dilute gases, a conventional approach is the use of the BBGKY hierarchy for the time-dependent reduced density matrices. In contrast, our contribution is motivated by the kinetic theory of the weakly nonlinear Schrödinger equation. The main observation is that the results obtained in the latter context carry over directly to weakly interacting quantum fluids provided one does not insist on normal order in the Duhamel expansion. We discuss the term by term convergence of the expansion and the equilibrium time correlation 〈a(t)* a(0)〉.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nordheim, L.W.: On the kinetic method in the new statistics and its application in the electron theory of conductivity. Proc. R. Soc. 119, 689–698 (1928)

    Article  ADS  Google Scholar 

  2. Peierls, R.E.: Zur kinetischen Theorie der Wärmeleitung in Kristallen. Ann. Phys. 3, 1055–1101 (1929)

    Article  Google Scholar 

  3. Uehling, E.A., Uhlenbeck, G.E.: Transport phenomena in Einstein-Bose and Fermi-Dirac gases. Phys. Rev. 43, 552–561 (1933)

    Article  MATH  ADS  Google Scholar 

  4. Landau, L.D.: The transport equation in the case of Coulomb interactions. Phys. Z. Sowj. Union 10, 154 (1936). (As no. 24 in: Collected Papers of L.D. Landau, edited by D. TerHaar, Pergamon Press, Oxford, 1965)

    MATH  Google Scholar 

  5. van Hove, L.: Quantum-mechanical perturbations giving rise to a statistical transport equation. Physica 21, 517–540 (1955)

    MATH  MathSciNet  Google Scholar 

  6. Prigogine, I.: Nonequilibrium Statistical Mechanics. Wiley, New York (1962)

    Google Scholar 

  7. Hugenholtz, N.M.: Derivation of the Boltzmann equation for a Fermi gas. J. Stat. Phys. 32, 231–254 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  8. Lanford, O.E.: Time evolution of large classical systems. In: Moser, J. (ed.) Lecture Notes in Physics, vol. 38, pp. 1–111. Springer, Berlin (1975)

    Google Scholar 

  9. Davies, E.B.: Quantum Theory of Open Systems. Academic Press, London (1976)

    MATH  Google Scholar 

  10. Hilbert, D.: Mathematische Probleme. In: Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. Vandenhoeck & Ruprecht, S. 253–297 (1900)

  11. Robert, D.: Semi-classical approximation in quantum mechanics. A survey of old and recent mathematical results. Helv. Phys. Acta 71, 44–116 (1998)

    MathSciNet  Google Scholar 

  12. Fröhlich, J., Graffi, S., Schwarz, S.: Mean-field and classical limit of many body Schrödinger dynamics for bosons. Commun. Math. Phys. 271, 681–697 (2007)

    Article  MATH  ADS  Google Scholar 

  13. Fröhlich, J., Knowles, A., Pizzo, A.: Atomism and quantization. J. Phys. A 40, 3033–3045 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Erdős, L., Schlein, B.: Quantum dynamics with mean field interaction: nonlinear Hartree equation. J. Stat. Phys. (2009, to appear)

  15. Lukkarinen, J., Spohn, H.: Weakly nonlinear Schrödinger equation with random initial data. arXiv:0901.3283 (2009)

  16. Streater, R.F.: On certain nonrelativistic quantized fields. Commun. Math. Phys. 7, 93–98 (1968)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Ginibre, J.: Some applications of functional integration in statistical mechanics. In: DeWitt, C., Stova, R. (eds.) Statistical Mechanics and Quantum Field Theory, pp. 327–428. Gordon & Breach, New York (1971)

    Google Scholar 

  18. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, 2nd edn. Text and Monographs in Physics, vol. 2. Springer, Berlin (1997)

    MATH  Google Scholar 

  19. Ho, T.G., Landau, L.J.: Fermi gas on a lattice in the van Hove limit. J. Stat. Phys. 87, 821–845 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Erdős, L., Salmhofer, M., Yau, H.T.: On the quantum Boltzmann equation. J. Stat. Phys. 116, 367–380 (2004)

    Article  ADS  Google Scholar 

  21. Spohn, H.: The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics. J. Stat. Phys. 124, 1041–1104 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Botvich, D.D., Malishev, V.A.: Unitary equivalence of temperature dynamics for ideal and locally perturbed Fermi gas. Commun. Math. Phys. 91, 301–312 (1983)

    Article  MATH  ADS  Google Scholar 

  23. Fröhlich, J., Merkli, M., Ueltschi, D.: Dissipative transport: thermal contacts and tunnelling junctions. Ann. Henri Poincaré 4, 897–945 (2003)

    Article  MATH  Google Scholar 

  24. Erdős, L., Yau, H.T.: Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation. Commun. Pure Appl. Math. 53, 667–735 (2000)

    Article  Google Scholar 

  25. Benedetto, D., Castella, F., Esposito, R., Pulvirenti, M.: From the N-body Schrödinger equation to the quantum Boltzmann equation: a term-by-term convergence result in the weak coupling regime. Commun. Math. Phys. 277, 1–44 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Benedetto, D., Castella, F., Esposito, R., Pulvirenti, M.: Some considerations on the derivation of the nonlinear quantum Boltzmann equation. J. Stat. Phys. 116, 381–410 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Benedetto, D., Castella, F., Esposito, R., Pulvirenti, M.: On the weak coupling limit for bosons and fermions. Math. Mod. Meth. Appl. Sci. 15, 1811–1843 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zakharov, V.E., L’vov, V.S., Falkovich, G.: Kolmogorov Spectra of Turbulence: I. Wave Turbulence. Springer, Berlin (1992)

    MATH  Google Scholar 

  29. Salmhofer, M.: Clustering of fermionic truncated expectation values via functional integration. arXiv:0809.3517 (2008)

  30. Chen, T.: Localization lengths and Boltzmann limit for the Anderson model at small disorders in dimension 3. J. Stat. Phys. 120, 279–337 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Lukkarinen, J.: Asymptotics of resolvent integrals: The suppression of crossings for analytic lattice dispersion relations. J. Math. Pures Appl. 87, 193–225 (2007)

    MATH  MathSciNet  Google Scholar 

  32. Erdős, L., Salmhofer, M.: Decay of the Fourier transform of surfaces with vanishing curvature. Math. Z. 257, 261–294 (2007)

    Article  MathSciNet  Google Scholar 

  33. Spohn, H.: Collisional invariants for the phonon Boltzmann equation. J. Stat. Phys. 124, 1131–1135 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Escobedo, M., Mischler, S., Valle, M.: Homogeneous Boltzmann equation in quantum relativistic kinetic theory. Electron J. Differ. Equ. 4, 1–85 (2003)

    MathSciNet  Google Scholar 

  35. Dolbeaut, J.: Kinetic models and quantum effects: a modified Boltzmann equation for Fermi-Dirac particles. Arch. Ration. Mech. Anal. 127, 101–131 (1994)

    Article  Google Scholar 

  36. Josserand, C., Pomeau, Y., Rica, S.: Self-similar singularities in the kinetics of condensation. J. Low Temp. Phys. 145, 231–265 (2006)

    Article  ADS  Google Scholar 

  37. Semikoz, D.V., Tkachev, I.I.: Condensation of bosons in the kinetic regime. Phys. Rev. D 55, 489–502 (1997)

    Article  ADS  Google Scholar 

  38. Spohn, H.: Kinetics of the Bose-Einstein condensation. arXiv:0809.4551 (2008)

  39. Lu, X.G.: On isotropic distributional solutions to the Boltzmann equation for Bose-Einstein particles. J. Stat. Phys. 116, 1597–1649 (2004)

    Article  MATH  ADS  Google Scholar 

  40. Lu, X.G.: The Boltzmann equation for Bose-Einstein particles: velocity concentration and convergence to equilibrium. J. Stat. Phys. 119, 1027–1067 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Spohn.

Additional information

Jürg Fröhlich and Tom Spencer have profoundly shaped the interface between physics and mathematics. It is therefore a particular pleasure to dedicate to them this article on a chapter of mathematical physics which is far from being closed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukkarinen, J., Spohn, H. Not to Normal Order—Notes on the Kinetic Limit for Weakly Interacting Quantum Fluids. J Stat Phys 134, 1133–1172 (2009). https://doi.org/10.1007/s10955-009-9682-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9682-8

Keywords

Navigation