Skip to main content
Log in

A Borel Transform Method for Locating Singularities of Taylor and Fourier Series

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Given a Taylor series with a finite radius of convergence, its Borel transform defines an entire function. A theorem of Pólya relates the large distance behavior of the Borel transform in different directions to singularities of the original function. With the help of the new asymptotic interpolation method of van der Hoeven, we show that from the knowledge of a large number of Taylor coefficients we can identify precisely the location of such singularities, as well as their type when they are isolated. There is no risk of getting artefacts with this method, which also gives us access to some of the singularities beyond the convergence disk. The method can also be applied to Fourier series of analytic periodic functions and is here tested on various instances constructed from solutions to the Burgers equation. Large precision on scaling exponents (up to twenty accurate digits) can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Pincherle, Sulla risoluzione dell’equazione funzionale ∑ h νϕ(xν)=f(x) a coefficienti costanti, Memorie della R. Academia delle scienze dell’Istituto di Bologna Serie IV IX:45–71 (1888). French translation: Acta Mathematica. 48:279–304 (1926).

    Google Scholar 

  2. E. Borel, Mémoire sur les séries divergentes. Ann. Sci. ’Ecole Normale Sup. 16:9–131 (1899). http://www.numdam.org/item?id=ASENS_1899_3_16_9_0

  3. E. Borel, Leçons sur les Séries Divergentes, (Gauthier-Villars, reprinted by Éditions Jacques Gabay, Paris, 1928).

  4. J. C. Le Guillou and J. Zinn-Justin (eds.), Large-Order Behaviour of Perturbation Theory (North-Holland, Amsterdam, 1990).

  5. B. Shawyer and B. Watson, Borel’s Method of Summability. (Oxford U.P., Oxford, 1994).

    Google Scholar 

  6. B. Yu. Sternin and V. E. Shatalov, Borel–Laplace Transform and Asymptotic Theory (CRC Press, Boca Raton, 1996).

  7. G. Pólya, Untersuchungen ¨ber L¨cken und Singularit¨ten von Potenzreihen. Math. Z. 29:549–640 (1929).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. D. Van Dyke, Computer-extended series. Ann. Rev. Fluid Mech. 16:287–309 (1984).

    ADS  Google Scholar 

  9. A. J. Guttmann, Asymptotic Analysis of Power-Series Expansions. In Phase Transitions, C. Domb and J. Lebowitz, (eds.) Vol. 13, (pp. 1–234, 1989).

  10. U. Frisch, T. Matsumoto and J. Bec, Singularities of the Euler equation? Not out of the blue! J. Stat. Phys. 113:761–781 (2003).

    Google Scholar 

  11. J. van der Hoeven, Algorithms for asymptotic interpolation, preprint 2006–12 Dep. Math. Univ. Paris-Sud, submitted to J. Symbolic Comput. (2006); see also http://www.math.u-psud.fr/~vdhoeven/Publs/2006/interpolate.ps.gz

  12. G. Darboux, Mémoire sur l’approximation des fonctions de très grands nombres. J. de Mathématiques Pures et Appliquées 4:5–56 and 377–416 (1878).

    Google Scholar 

  13. P. Henrici, Applied and Computational Complex Analysis, Vol. 2. (John Wiley and Sons, 1977).

  14. C. Hunter and B. Guerrieri, Deducing the properties of singularities of functions from their Taylor series coefficients. SIAM J. Appl. Math. 39:248–263 (1980), erratum: 41:203 (1981).

    Google Scholar 

  15. J. Zinn-Justin, Analysis of Ising model critical exponents from high temperature series expansions. J. Physique 40:969–975 (1979).

    MathSciNet  Google Scholar 

  16. M. J. Shelley, A study of singularity formation in vortex sheet motion by a spectrally accurate vortex method. J. Fluid Mech. 244:493–526 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. W. Pauls, T. Matsumoto, U. Frisch and J. Bec, Nature of complex singularities for the 2D Euler equation. Physica D 219:40–59 (2006) (nlin.CD/0510059).

    Google Scholar 

  18. G. F. Carrier, M. Krook and C. E. Pearson, Functions of a Complex Variable: Theory and Technique (McGraw-Hill, New York, 1966).

    MATH  Google Scholar 

  19. P. Wynn, On a Procrustean technique for the numerical transformation of slowly convergent sequences and series. Proc. Camb. Phil. Soc. 52:663–671 (1956).

    MATH  MathSciNet  Google Scholar 

  20. P. Wynn, The rational approximation of functions which are formally defined by a power series expansion. Mathemat. Comput. 14:147–186 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  21. E. J. Weniger, Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Comput. Phys. Rep. 10:189–371 (1989) (math.NA/0306302).

    Google Scholar 

  22. C. Brezinski and M. Redivo Zaglia, Extrapolation Methods (North-Holland, 1991).

  23. I. Jensen and A. J. Guttmann, Self-avoiding polygons on the square lattice. J. Phys. A: Math. Gen. 32:4867–4876 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. I. Jensen, A parallel algorithm for enumeration of self-avoiding polygons on the square lattice. J. Phys. A: Math. Gen. 36:5731–5745 (2003).

    Article  ADS  Google Scholar 

  25. I. Jensen, Honeycomb lattice polygons and walks as a test of series analysis techniques. J. Phys.: Conf. Ser. 42:163–178 (2006).

    Article  ADS  Google Scholar 

  26. J. Ecalle, Introduction aux Fonctions Analysables et Preuve Constructive de la Conjecture de Dulac (Actualités mathématiques. Hermann, Paris, 1992).

  27. J. van der Hoeven, Automatic Asymptotics, Thesis, Orsay (1997) http://www.math.u-psud.fr/~vdhoeven/Books/phd.ps.gz

  28. J. van der Hoeven, Transseries and Real Differential Algebra, Lecture in Math., Springer, to appear.

  29. J. D. Fournier et U. Frisch, L’équation de Burgers déterministe et statistique. J. Méc. Th. Appl. 2:699–750 (1983).

    MATH  MathSciNet  Google Scholar 

  30. U. Frisch and J. Bec, Burgulence. In Les Houches 2000: New Trends in Turbulence, M. Lesieur, A. Yaglom and F. David (eds.) (Springer EDP-Sciences, pp. 341–383, 2001). (nlin.CD/0012033).

  31. G. W. Platzman, An exact integral of complete spectral equations for unsteady one-dimensional flow. Tellus 16: 422–431 (1964).

    Article  Google Scholar 

  32. M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications, 1965).

  33. P. Debye, N¨herungsformeln f¨r die Zylinderfunktionen f¨r große Werte des Arguments und die unbeschr¨nkt ver¨nderliche Werte des Index. Math. Ann. 67: 535–558 (1908).

    Article  MathSciNet  Google Scholar 

  34. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, 1922).

  35. B. Ya. Levin, Lectures on Entire Functions (American Mathematical Society, Providence, 1996).

  36. L. Bieberbach, Analytische Fortsetzung, Springer, Berlin, 1955. Russian translation: Analiticheskoye Prodolzhenye, Nauka, Moscow, 1967.

  37. F. W. J. Olver, Asymptotics and Special Functions (Academic Press, 1974).

  38. J. M¨ller, Convergence acceleration of Taylor sections by convolution. Constr. Appr. 15:523–536 (1999).

    Article  Google Scholar 

  39. J. van der Hoeven, Relax, but don’t be too lazy. J. Symbolic Comput. 34:479–542 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  40. J. van der Hoeven, On effective analytic continuation, preprint Dép. Math. Orsay, http://www.math.u-psud.fr/~vdhoeven/Publs/2006/riemann.ps.gz

  41. A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow. (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  42. M. E. Brachet, D. I. Meiron, S. A. Orszag, B. G. Nickel, R. H. Morf and U. Frisch, Small-scale structure of the Taylor–Green vortex. J. Fluid Mech. 167:411–452 (1983).

    Article  ADS  Google Scholar 

  43. R. B. Pelz and Y. Gulak, Evidence for a real-time singularity in hydrodynamics from time series analysis. Phys. Rev. Lett. 79:4998–5001 (1997).

    Article  ADS  Google Scholar 

  44. D. W. Moore, The spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc. R. Soc. London A 365:105–119 (1979).

    Article  MATH  ADS  Google Scholar 

  45. D. I. Meiron, G. R. Baker and S. A. Orszag, Analytic structrue of vortex sheet dynamics. Part 1. Kelvin–Helmholtz instability. J. Fluid Mech. 114:283–298 (1982).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. L. A. Aizenberg and V. M. Trutnev, A Borel summation method for n-tuple power series. Sibirsk. Matem. Zh. 12(6):1895–1901 (1971).

    Google Scholar 

  47. V. M. Trutnev, The radial indicator in the theory of Borel summability with some applications. Sibirsk. Matem. Zh. 13(3):659–664 (1972).

    MATH  MathSciNet  Google Scholar 

  48. L. I. Ronkin, Introduction to the Theory of Entire Functions of Several Complex Variables. Transl. Math. Monographs, Vol. 44, AMS (1974).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Frisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauls, W., Frisch, U. A Borel Transform Method for Locating Singularities of Taylor and Fourier Series. J Stat Phys 127, 1095–1119 (2007). https://doi.org/10.1007/s10955-007-9307-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9307-z

Keywords

Navigation