Skip to main content
Log in

Solubility Measurement and Mathematical Modeling for Bosentan in Mixtures of Ethylene Glycol and Water at 293.15–313.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The molar solubility of bosentan (BST) in mixtures of ethylene glycol (EG) + water at different temperatures from 293.15 to 313.15 K was measured by using the shake flask technique. Experimental solubility increased with increasing temperature and mass fraction of cosolvent; so that, the largest solubility was found in neat cosolvent at 313.15 K. The cosolvency models of Jouyban–Acree and its combined version with van’t Hoff equation (Jouyban–Acree–van’t Hoff model) were used for correlation of BST solubility data with the low values of mean relative deviations (MRD% ≤ 8.1). Furthermore, some untested data were predicted based on the achieved trained models at 298.15 K. X-ray powder diffraction was also served to analyze the equilibrium solid phase crystal of BST and the results turns out that no polymorphic transformation, solvate formation or crystal transition during the whole solvent crystallization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Martinez, F., Jouyban, A., Acree, W.E., Jr.: Pharmaceuticals solubility is still nowadays widely studied everywhere. Pharm. Sci. 23, 1–2 (2017)

    Article  CAS  Google Scholar 

  2. Jouyban, A.: Handbook of Solubility data for Pharmaceuticals. CRC Press, BocaRaton FL (2010)

    Google Scholar 

  3. Barzegar-Jalali, M., Jafari, P., Jouyban, A.: Experimental determination and correlation of naproxen solubility in biodegradable low-toxic betaine-based deep eutectic solvents and water mixtures at 293.15 K to 313.15 K. Fluid Phase Equilib. (2022). https://doi.org/10.1016/j.fluid.2022.113508

    Article  Google Scholar 

  4. Yin, H., Zhao, H., Zhao, Y.: Propylthiouracil solubility in aqueous solutions of ethylene glycol, N, N-dimethylformamide, N-methyl-2-pyrrolidone, and dimethylsulfoxide: measurement and thermodynamic modeling. J. Chem. Eng. Data. 64, 2836–2842 (2019)

    Article  CAS  Google Scholar 

  5. Kolář, P., Shen, J.-W., Tsuboi, A., Ishikawa, T.: Solvent selection for pharmaceuticals. Fluid Phase Equilib. 194–197, 771–782 (2002)

    Article  Google Scholar 

  6. Rubino, J.T., Boylan, J.C.: Cosolvents and cosolvency. In: Encyclopedia of Pharmaceutical Technology. Marcel Dekker, New York (1988)

    Google Scholar 

  7. Aulton, M.E.: Pharmaceutics. In: The Science of Dosage Forms Design. Churchill Livingstone, London (2002)

    Google Scholar 

  8. Vachiery, J.L.: Pulmonary arterial hypertension management—A new approach for a rare disease. Eur. Respir. Pulmon. Dis. 2, 1–50 (2016)

    Google Scholar 

  9. Krupa, A., Majda, D., Mozgawa, W., Szlęk, J., Jachowicz, R.: Physicochemical properties of bosentan and selected pde-5 inhibitors in the design of drugs for rare diseases. AAPS Pharm. Sci. Tech. 18, 1318–1331 (2017)

    Article  CAS  Google Scholar 

  10. Azim, M.S., Husain, A., Mitra, M., Bhasin, P.S.: Pharmacological and pharmaceutical profile of bosentan: a review. Am. J. Pharm. Tech. Res. 4, 135–147 (2012)

    Google Scholar 

  11. Dangre, P.V., Sormare, V.B., Godbole, M.D.: Improvement in dissolution of bosentan monohydrate by solid dispersions using spray drying technique. Open Pharm. Sci. J. 4, 23–31 (2017)

    Article  Google Scholar 

  12. Mohammad Shafi, MSh., Saudagar, R.B.: Solubility enhancement bosentan monohydrate using mixed hydrotropy. Int J Inst. Pharm. Life Sci. 5(3), 319–330 (2015)

    Google Scholar 

  13. Bab, R.S., Middha, A.K., Kishore, D.V., Karunakranth, D.: Development and evaluation of bosentan monohydrate loaded lipid solid dispersions. Indian J. Res. Pharm. Biotechnol. 5(6), 379–386 (2017)

    Google Scholar 

  14. Negendra, R.J.V.V., Jagan Mohan, R.N.V.V., Prasanna, M.L., Narendra, D.: Devanaboyina N.: Formulation and evaluation of bosentan nanosuspensions by nanopercipitaion methode. Int. J. Pharm. 7(1), 94–100 (2017)

    Google Scholar 

  15. Kendre, P.N., Chaudhari, P.D.: Effect of amphiphilic graft co-polymer-carrier on physical stability of bosentan nanocomposite: assessment of solubility, dissolution and bioavailability. Eur. J. Pharm. Biopharm. 126, 177–186 (2018)

    Article  CAS  Google Scholar 

  16. Tenjarla, S.: Microemulsions: an overview and pharmaceutical applications. Crit. Rev. Ther. Drug Carrier Syst. 16, 461–521 (1999)

    Article  CAS  Google Scholar 

  17. Serajuddin, A.T.: Salt formation to improve drug solubility. Adv. Drug Deliv. Rev. 59, 603–616 (2007)

    Article  CAS  Google Scholar 

  18. Sajedi-Amin, S., Barzegar-Jalali, M., Fathi-Azarbayjani, A., Kebriaeezadeh, A., Martínez, F., Jouyban, A.: Solubilization of bosentan using ethanol as a pharmaceutical cosolvent. J. Mol. Liq. 232, 152–158 (2017)

    Article  CAS  Google Scholar 

  19. Barzegar-Jalali, M., Mirheydari, S.N., Rahimpour, E., Shekaari, H., Martinez, F., Jouyban, A.: Experimental determination and correlation of bosentan solubility in (PEG 200 + water) mixtures at T = (293.15–313.15) K. Phys. Chem. Liq. 57, 504–515 (2019)

    Article  CAS  Google Scholar 

  20. Babaei, M., Shayanfar, A., Rahimpour, E., Barzegar-Jalali, M., Martinez, F., Jouyban, A.: Solubility of bosentan in propylene glycol + water mixtures at various temperatures: experimental data and mathematical modelling. Phys. Chem. Liq. 7, 338–348 (2019)

    Article  Google Scholar 

  21. Shakeel, F., AlAjmi, M.F., Haq, N., Siddiqui, N.A., Alam, P., Al-Rehaily, A.J.: Solubility and thermodynamic function of a bioactive compound bergenin in various pharmaceutically acceptable neat solvents at different temperatures. J. Chem. Thermodyn. 101, 19–24 (2016)

    Article  CAS  Google Scholar 

  22. Jouyban, A., Acree, W.E., Jr., Fakhree, M.A.: Toxicity and Drug Testing. InTech Publisher, New York (2012)

    Google Scholar 

  23. Grant, D.J.W., Mehdizadeh, M., Chow, A.H.L., Fairbrother, J.E.: Non-linear van’t Hoff solubility-temperature plots and their pharmaceutical interpretation. Int. J. Pharm. 18, 25–38 (1984)

    Article  CAS  Google Scholar 

  24. Jouyban, A., Acree, W.E., Jr.: Mathematical derivation of the Jouyban–Acree model to represent solute solubility data in mixed solvents at various temperatures. J. Mol. Liq. 256, 541–547 (2018)

    Article  CAS  Google Scholar 

  25. Jouyban, A., Khoubnasabjafari, M., Chan, H.K., Acree, W.E., Jr.: Mathematical representation of solubility of amino acids in binary aqueous-organic solvent mixtures at various temperatures using the Jouyban-Acree model. Pharmazie 61, 789–792 (2006)

    CAS  Google Scholar 

  26. Jouyban, A., Shokri, J., Barzegar-Jalali, M., Hassanzadeh, D., Acree, W.E., Jr., Ghafourian, T., Nokhodchi, A.: Solubility of chlordiazepoxide, diazepam, and lorazepam in ethanol + water mixtures at 303.2 K. J. Chem. Eng. Data 54, 2142–2145 (2009)

    Article  CAS  Google Scholar 

  27. Jouyban, A., Acree, W.E., Jr.: Comments on “solubility of ethyl maltol in aqueous ethanol mixtures” (Liu, B.-S.; Liu, R.-J.; Hu, Y.-Q.; Hu, Q.-F. J. Chem. Eng. Data 2008, 53, 2712−2714). J. Chem. Eng. Data 54, 1168–1170 (2009)

    Article  CAS  Google Scholar 

  28. Ahmadian, S., Panahi-Azar, V., Fakhree, M.A.A., Acree, W.E., Jr., Jouyban, A.: Solubility of phenothiazine in water, ethanol, and propylene glycol at (298.2–338.2) K and their binary and ternary mixtures at 298.2 K. J. Chem. Eng. Data 56, 4352–4355 (2011)

    Article  CAS  Google Scholar 

  29. Fakhree, M.A.A., Ahmadian, S., Panahi-Azar, V., Acree, W.E., Jr., Jouyban, A.: Solubility of 2-hydroxybenzoic acid in water, 1-propanol, 2-propanol, and 2-propanone at (298.2–338.2) K and their aqueous binary mixtures at 298.2 K. J. Chem. Eng. Data 57, 3303–3307 (2012)

    Article  CAS  Google Scholar 

  30. Fathi-Azarbayjani, A., Abbasi, M., Vaez-Gharamaleki, J., Jouyban, A.: Measurement and correlation of deferiprone solubility: investigation of solubility parameter and application of van’t Hoff equation and Jouyban-Acree model. J. Mol. Liq. 215, 339–344 (2016)

    Article  CAS  Google Scholar 

  31. Jouyban, A.: Review of the cosolvency models for predicting drug solubility in solvent mixtures: an update. J. Pharm. Pharm. Sci. 22, 466–485 (2019)

    Article  CAS  Google Scholar 

  32. Dadmand, S., Kamari, F., Acree, W.E., Jr., Jouyban, A.: solubility prediction of drugs in binary solvent mixtures at various temperatures using a minimum number of experimental data points. AAPS Pharm. Sci. Tech. 20, 10 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by Elite Researcher Grant Committee under grant number 943632 from the National Institutes for Medical Research Development (NIMAD), Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa Jafari.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, M., Rahimpour, E., Jafari, P. et al. Solubility Measurement and Mathematical Modeling for Bosentan in Mixtures of Ethylene Glycol and Water at 293.15–313.15 K. J Solution Chem 52, 218–227 (2023). https://doi.org/10.1007/s10953-022-01227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01227-2

Keywords

Navigation