Skip to main content
Log in

Determination of the Distribution of Cupric Chloro-Complexes in Hydrochloric Acid Solutions at 298 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The distribution of metal-chloro complexes in hydrochloric acid solutions is a fundamental aspect of anion exchange reactions that allows ultrahigh purification during hydrometallurgical processes. However, these exchange reactions are not yet understood in detail. To clarify and improve anion exchange separation so as to obtain a more sophisticated purification process, it is necessary to accurately determine the distribution of metal-chloro complexes. In the present work, cupric-chloro complexes were investigated because copper is one of the most important base metals in modern society. The absorption spectra of solutions of these complexes were acquired at 298 K and analyzed by multivariate curve resolution–alternating least squares method (MCR–ALS), a factor analysis technique widely used in chemometrics. The resulting cupric-chloro complex distributions were fitted with a thermodynamic model using appropriate activity coefficients extended to the concentrated solutions. These calculations employed a modified Debye–Hückel model because the distributions acquired through the model-free MCR–ALS analysis were less meaningful, both physically and chemically. It was concluded that five [CuIICl n ]2−n species, where n = 0–4, are present in the hydrochloric acid solutions. In addition, cumulative formation constants and pure molar attenuation coefficients were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arakawa, K., Ono, K., Isshiki, M., Mimura, K., Uchikoshi, M., Mori, H.: Observation of the one-dimensional diffusion of nanometer-sized dislocation loops. Science 318, 956–959 (2007)

    Article  CAS  Google Scholar 

  2. Fukuyama, H., Morohoshi, K., Uchikoshi, M., Isshiki, M.: Dynamic surface tension behavior of liquid iron during carburization and decarburization processes. ISIJ Int. 54, 2109–2114 (2014)

    Article  CAS  Google Scholar 

  3. Kitahara, T., Tanada, K., Ueno, S., Sugioka, K., Kubo, M., Tsukada, T., Uchikoshi, M., Fukuyama, H.: Effect of static magnetic field on recalescence and surface velocity field in electromagnetically levitated molten CuCo droplet in undercooled state. Metall. Mater. Trans. B 46B, 2706–2712 (2015)

    Article  Google Scholar 

  4. Bost, M.C., Mahan, J.E.: Optical properties of semiconducting iron disilicide thin films. J. Appl. Phys. 58, 2696–2703 (1985)

    Article  CAS  Google Scholar 

  5. Gotoh, K., Suzuki, H., Udono, H., Kikuma, I., Esaka, F., Uchikoshi, M., Isshiki, M.: Single crystalline β-FeSi2 grown using high-purity FeSi2 source. Thin Solid Films 515, 8263–8267 (2007)

    Article  CAS  Google Scholar 

  6. Kekesi, T., Uchikoshi, M., Mimura, K., Isshiki, M.: Anion-exchange separation in hydrochloric acid solutions for the ultrahigh purification of cobalt. Metall. Mater. Trans. B 32B, 573–582 (2001)

    Article  CAS  Google Scholar 

  7. Uchikoshi, M., Shibuya, H., Kékesi, T., Mimura, K., Isshiki, M.: Mass production of high-purity iron using anion-exchange separation and plasma arc melting. Metall. Mater. Trans. B 40B, 615–618 (2009)

    Article  CAS  Google Scholar 

  8. Uchikoshi, M., Imai, K., Mimura, K., Isshiki, M.: Oxidation refining of iron using plasma-arc melting. J. Mater. Sci. 43, 5430–5435 (2008)

    Article  CAS  Google Scholar 

  9. Uchikoshi, M., Nagahara, T., Lim, J.W., Kim, S.B., Mimura, K., Isshiki, M.: Anion-exchange behavior of Mo(V) and W(VI) in HCl solutions. High Temp. Mater. Process 30, 345–351 (2011)

    Article  CAS  Google Scholar 

  10. Kraus, K.A., Nelson, F.: Anion exchange studies of the fission products. In: Proceedings international conference on peaceful uses of atomic energy, pp. 113–125. Geneva (1955)

  11. Dorfner, K. (ed.): Ion Exchangers. Walterde Guyter, Boston (1991)

    Google Scholar 

  12. Crerar, D.A.: A method for computing multicomponent chemical equilibria based on equilibrium constants. Geochim. Cosmochim. Acta 39, 1375–1384 (1975)

    Article  CAS  Google Scholar 

  13. Seward, T.M.: The formation of lead(II) chloride complexes to 300 °C: a spectrophotometric study. Geochim. Cosmochim. Acta 48, 121–134 (1984)

    Article  CAS  Google Scholar 

  14. Gammons, C.H., Seward, T.M.: Stability of manganese(II) chloride complexes from 25 to 300 °C. Geochim. Cosmochim. Acta 60, 4295–4311 (1996)

    Article  CAS  Google Scholar 

  15. Brugger, J., McPhail, D.C., Black, J., Spiccia, L.: Complexation of metal ions in brines: application of electronic spectroscopy in the study of the Cu(II)–LiCl–H2O system between 25 and 90 °C. Geochim. Cosmochim. Acta 65, 2691–2708 (2001)

    Article  CAS  Google Scholar 

  16. Brugger, J.: BeerOz, a set of Matlab routines for the quantitative interpretation of spectrophotometric measurements of metal speciation in solution. Comput. Geosci. 33, 248–261 (2007)

    Article  Google Scholar 

  17. Anderson, G.M., Crerar, D.A.: Thermodynamics in Geochemistry. The Equilibrium Model. Oxford University Press, Oxford (1993)

    Google Scholar 

  18. Bjerrum, J.: Determination of small stability constants. A spectrophotometric study of copper(II) chloride complexes in hydrochloric acid. Acta. Chem. Scand. A 41A, 328–334 (1987)

    Article  Google Scholar 

  19. Sverjensky, D.A., Shock, E.L., Helgeson, H.C.: Prediction of the thermodynamic properties of aqueous metal complexes to 1000 °C and 5 kb. Geochim. Cosmochim. Acta 61, 1359–1412 (1997)

    Article  CAS  Google Scholar 

  20. Uekawa, E., Murase, K., Matsubara, E., Hirato, T., Awakura, Y.: Determination of chemical species and their composition in Ni–Mo alloy plating baths by factor analysis of visible absorption spectra. J. Electrochem. Soc. 145, 523–528 (1998)

    Article  CAS  Google Scholar 

  21. Ikeda, A., Hennig, C., Rossberg, A., Tsushima, S., Scheinost, A.C., Bernhard, G.: Structural determination of individual chemical species in a mixed system by iterative transformation factor analysis-based X-ray absorption spectroscopy combined with UV–Visible absorption and quantum chemical calculation. Anal. Chem. 80, 1102–1110 (2008)

    Article  CAS  Google Scholar 

  22. Murase, K., Ando, H., Matsubara, E., Hirato, T., Awakura, Y.: Determination of Mo(VI) species and composition in Ni–Mo alloy plating baths by Raman spectra factor analysis. J. Electrochem. Soc. 147, 2210–2217 (2000)

    Article  CAS  Google Scholar 

  23. Furlani, C., Morpurgo, G.: Properties and electronic structure of tetra halogeno cuprate (II)-complexes. Theor. Chim. Acta 1, 102–115 (1963)

    Article  CAS  Google Scholar 

  24. Malinowski, E.R., Howery, D.G.: Factor Analysis in Chemistry, 3rd edn. Wiley, New York (1980)

    Google Scholar 

  25. Gemperline, P.J: Pratical Guide to Chemomertrics, 2nd edn. Taylor & Francis Group, Boca Raton (2006)

  26. Jaumot, J., de Juan, A., Tauler, R.: MCR-ALS GUI 2.0: new features and applications. Chemom. Intell. Lab. Syst. 140, 1–12 (2015)

    Article  CAS  Google Scholar 

  27. Maeder, M.: Evolving factor analysis for the resolution of overlapping chromatographic peaks. Anal. Chem. 59, 527–530 (1987)

    Article  CAS  Google Scholar 

  28. Filipponi, A., D’Angelo, P., Pavel, N.V., Dicicco, A.: Triplet correlations in the hydration shell of aquaions. Chem. Phys. Lett. 225, 150–155 (1994)

    Article  CAS  Google Scholar 

  29. D’Angelo, P., Bottari, E., Festa, M.R., Nolting, H.F., Pavel, N.V.: Structural investigation of copper(II) chloride solutions using x-ray absorption spectroscopy. J. Chem. Phys. 107, 2807–2812 (1997)

    Article  Google Scholar 

  30. Marsh, A.R.W., Mcelroy, W.J.: The dissociation constant and Henry law constant of HCl in aqueous solution. Atmos. Environ. 19, 1075–1080 (1985)

    Article  CAS  Google Scholar 

  31. Helgeson, H.C., Kirkham, D.H.: Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. Am. J. Sci. 274, 1199–1261 (1974)

    Article  CAS  Google Scholar 

  32. Partanen, J.I., Juusola, P.M., Vahteristo, K.P., de Mendonca, A.J.G.: Re-evaluation of the activity coefficients of aqueous hydrochloric acid solutions up to a molality of 16.0 mol kg−1 using the Hückel and Pitzer equations at temperatures from 0 to 50 °C. J. Solution Chem. 36, 39–59 (2007)

    Article  CAS  Google Scholar 

  33. Kielland, J.: Individual activity coefficients of ions in aqueous solutions. J. Am. Chem. Soc. 59, 1675–1678 (1937)

    Article  CAS  Google Scholar 

  34. Helgeson, H.C., Kirkham, D.H.: Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. Am. J. Sci. 274, 1089–1198 (1974)

    Article  CAS  Google Scholar 

  35. Setchénow, M.: Über die constitution der salzlösungen auf grund ihres verhaltens zu kohlensäure. Z. Phys. Chemie-Int. J. Res. Phys. Chem. Chem. Phys. 4, 117–126 (1889)

    Google Scholar 

  36. Hershey, J.P., Damesceno, R., Millero, F.J.: Densities and compressibilities of aqueous HCl and NaOH From 0 to 45 °C. The effect of pressure on the ionization of water. J. Solution Chem. 13, 825–848 (1984)

    Article  CAS  Google Scholar 

  37. Kell, G.S.: Density, Thermal expansivity, and compressibility of liquid water from 0 to 150 °C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J. Chem. Eng. Data 20, 97–105 (1975)

    Article  CAS  Google Scholar 

  38. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147 (1998)

    Article  Google Scholar 

  39. Xia, F.F., Yi, H.B., Zeng, D.: Hydrates of copper dichloride in aqueous solution: a density functional theory and polarized continuum model investigation. J. Phys. Chem. A 113, 14029–14038 (2009)

    Article  CAS  Google Scholar 

  40. Xia, F.F., Yi, H.B., Zeng, D.: Hydrates of Cu2+ and CuCl+ in dilute aqueous solution: a density functional theory and polarized continuum model investigation. J. Phys. Chem. A 114, 8406–8416 (2010)

    Article  CAS  Google Scholar 

  41. Yi, H.B., Xia, F.F., Zhou, Q., Zeng, D.: [CuCl3] and [CuCl4]2− hydrates in concentrated aqueous solution: a density functional theory and ab Initio study. J. Phys. Chem. A 115, 4416–4426 (2011)

    Article  CAS  Google Scholar 

  42. Allen, P.G., Bucher, J.J., Shuh, D.K., Edelstein, N.M., Reich, T.: Investigation of aquo and chloro complexes of UO2 2+, NpO2 +, Np4+, and Pu3+ by X-ray absorption fine structure spectroscopy. Inorg. Chem. 36, 4676–4683 (1997)

    Article  CAS  Google Scholar 

  43. Ikeda, A., Yaita, T., Okamoto, Y., Shiwaku, H., Suzuki, S., Suzuki, T., Fujii, Y.: Extended X-ray absorption fine structure investigation of adsorption and separation phenomena of metal ions in organic resin. Anal. Chem. 79, 8016–8023 (2007)

    Article  CAS  Google Scholar 

  44. Kékesi, T., Mimura, K., Isshiki, M.: Ultra-high purification of iron by anion exchange in hydrochloric acid solutions. Hydrometallurgy 63, 1–13 (2002)

    Article  Google Scholar 

  45. Kékesi, T., Isshiki, M.: Anion-exchange behavior of copper and some metallic impurities in HCl solutions. Mater. T. Jim 35, 406–413 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Mr. Yuji Baba for his great devotion to this experimental work. This research was performed at the MSTeC Research Center at Institute of Multidisciplinary Research for Advanced Materials, Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Uchikoshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchikoshi, M. Determination of the Distribution of Cupric Chloro-Complexes in Hydrochloric Acid Solutions at 298 K. J Solution Chem 46, 704–719 (2017). https://doi.org/10.1007/s10953-017-0597-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0597-8

Keywords

Navigation