Skip to main content

Advertisement

Log in

Enhancement in Aqueous Solubility of Mefenamic Acid using Micellar Solutions of Various Surfactants

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The development of a meaningful dissolution procedure for drug products with limited water solubility has been a challenge to both the pharmaceutical industry and the agencies that regulate them. On the other hand, poorly soluble drugs present a big problem in pharmaceutical formulations. Therefore, various methods to improve the dissolution of poorly soluble drugs have been reported and employing surfactants for this purpose is the leading approach. In spite of wide applications of Mefenamic acid, the enhancement of its solubility in water using surfactant systems has not been explored. Therefore, we have investigated the interaction between this drug and anionic (SDS, SDBS, DTAB, CTAB, TTAB) surfactants as well as non-ionic (Tween 20, Tween 40, Tween 60, Tween 80, Brij 30, Brij 35,Brij 56 and Brij 58) surfactants. The results show that, irrespective of the surfactant type, the solubility of Mefenamic acid increases with increase in concentration of a surfactant, leading to the conclusion that there is an association between the drug and the surfactants. The molar solubilization ratio, micelle–water partition coefficient (K M), binding constant (K) and the Gibbs energy of solubilization (\( \Delta G_{\text{s}}^{\text{o}} \)) of the drug in the micelles were determined to yield a model to correlate the solubility with the structure of the surfactant used. An outcome of the results is that the order of solubility of this drug in non-ionic and ionic surfactants is Tween 80 > Tween 60 > Tween 40 > Tween 20 and, in the case of the Brij series, is Brij56 > Brij58 > Brij35 > Brij30, while in cationic and anionic surfactants the order is CTAB > TTAB > DTAB and SDBS > SDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Saha, R.N., Sajeev, C., Padma, P.K., Sreekhar, C., Shashikanth, G.: Solubility enhancement of nimesulide and ibuprofen by solid dispersion technique. Indian J. Pharm. Sci. 64, 529–534 (2002)

    CAS  Google Scholar 

  2. Desai, K.G.H., Kulkarni, A.R., Aminabhavi, T.M.: Solubility of rofecoxib in the presence of methanol, ethanol and sodium laurylsulfate at (298.15, 303.15 and 308.15 K). J. Chem. Eng. Data 48, 942–945 (2003)

    Article  CAS  Google Scholar 

  3. Liu, C., Desai, K.G.H.: Solubility of valdecoxib in the presence of ethanol and sodium lauryl sulfate at (298.15, 303.15 and 308.15) K. J. Chem. Eng. Data 49, 1847–1850 (2004)

    Article  CAS  Google Scholar 

  4. Desai, K.G.H., Park, H.J.: Solubility studies of valdecoxib in the presence of carriers, cosolvents and surfactants. Drug Dev. Res. 62, 41–48 (2004)

    Article  CAS  Google Scholar 

  5. Rangel-Yagui, C.O., Pessoa Jr, A., Tavares, L.C.: Micellar solubilization of drugs. J. Pharm. Pharm. Sci. 8, 147–163 (2005)

    CAS  Google Scholar 

  6. Rangel-Yagui, C.O., Hsu, H.W.L., Pessoa Jr, A., Tavares, L.C.: Micellar solubilization of ibuprofen—Influence of surfactant head groups on the extent of solubilization. Braz. J. Pharm. Sci. 41, 237–246 (2005)

    CAS  Google Scholar 

  7. Etman, M.A., Salama, R.O., Shamsedeen, M.A., El-Kamel, A.: Solubilization of etodolac for parenteral administration. Indian J. Pharm. Sci. 63, 459–467 (2001)

    Google Scholar 

  8. Zhao, P.: Li., L., Yalkowsky, S.H.: combined effect of cosolvent and cyclodextrin on solubilization of nonpolar drugs. J. Pharm. Sci. 88, 967–969 (1999)

    Article  CAS  Google Scholar 

  9. Bhatt, P.M., Ravindra, N.V., Banerjee, R., Desiraju, G.R.: Saccharin as a salt former. Enhanced solubilities of saccharinates of active pharmaceutical ingredients. Chem. Commun. 8, 1073–1075 (2005)

    Article  Google Scholar 

  10. Nielsen, A.B., Frydenvang, K., Liljefors, T., Buur, A., Larsen, C.: Assessment of the combined approach of N-alkylation and salt formation to enhance aqueous solubility of tertiary amines using bupivacaine as a model drug. Eur. J. Pharm. Sci. 24, 85–93 (2005)

    Article  CAS  Google Scholar 

  11. Otsuka, M., Matsuda, Y.: Effect of co grinding with various kinds of surfactants on the dissolution behaviour of phenytoin. J. Pharm. Sci. 84, 1434–1437 (1995)

    Article  CAS  Google Scholar 

  12. Kumar, N.K., Murali, M.B.G.V., Prasad, C.D.S., Himasankar, K., Seshasayana, H.A., Murthy, V.R.: Comparative studies on the effect of some hydrophilic polymers on the dissolution rate of a poorly water-soluble drug meloxicam. Indian Drugs 39, 323–329 (2002)

    CAS  Google Scholar 

  13. Corvi, M.P., Cirri, M., Allolio, B.: Enhancement of solubility and bioavailability by ternary complexation with β-cyclodextrin and glycine. J. Pharm. Sci. 92, 2177–2184 (2003)

    Article  Google Scholar 

  14. Uekama, K., Fujinaga, T., Hirayama, F., Otagiri, M., Yamasaki, M., Seo, H., Hashimoto, T., Tsuruoka, M.: Improvement of the oral bioavailability of digitalis glycosides by cyclodextrin complexation. J. Pharm. Sci. 72, 1338–1341 (1983)

    Article  CAS  Google Scholar 

  15. Gupta, P., Kakamanu, V.K., Bansal, A.K.: Stability and solubility of celecoxib–PVP amorphous dispersions: a molecular perspective. Pharm. Res. 21, 1762–1769 (2004)

    Article  CAS  Google Scholar 

  16. Chauchan, C., Shimpi, S., Paradkar, A.: Preparation and characterization of etoricoxib solid dispersions using lipid carriers by spray drying technique. AAPS Pharma Sci. Tech. 6, E405–E409 (2005)

    Article  Google Scholar 

  17. Pringsheim, T., Davenport, W.J., Dodick, D.: Acute treatment and prevention of menstrually related migraine headache: evidence-based review. Neurology 70, 1555–1563 (2008)

    Article  CAS  Google Scholar 

  18. http://www.drugbank.ca/system/fda_labels/DB00784.pdf?1265922813

  19. Bhat, P.A., Dar, A.A., Rather, G.M.: Solubilization capabilities of some cationic, anionic, and nonionic surfactants toward the poorly water-soluble antibiotic drug erythromycin. J. Chem. Eng. Data 53, 1271–1277 (2008)

    Article  CAS  Google Scholar 

  20. Cheng, Y., Jeipin, D.: Solubilization of NSAIDs in the presence of tween series surfactants. Phys. Chem. Liq. 44, 249–256 (2005)

    Google Scholar 

  21. Katagi, T.: Surfactant effects on environmental behavior of pesticides. Rev. Environ. Contam. Toxicol. 198, 71–177 (2008)

    Google Scholar 

  22. Edwards, D.A., Luthy, R.G., Liu, Z.: Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ. Sci. Technol. 25, 127–133 (1991)

    Article  CAS  Google Scholar 

  23. Ullah, I., Baloch, M.K.: Durrani. G.F.: solubility of nonsteroidal anti-inflammatory drugs (NSAIDs) in aqueous solutions of non-ionic surfactants. J. Solution Chem. 40, 1341–1348 (2011)

    Article  CAS  Google Scholar 

  24. Ullah, I., Baloch, M.K., Durrani, G.F.: Solubility of LIDOCAINE in ionic, nonionic and zwitterionic surfactants. J. Solution Chem. 41, 215–222 (2012)

    Article  CAS  Google Scholar 

  25. Ullah, I., Baloch, M.K., Ullah, I.: Apparent solubility of ibuprofen in dimethyl dodecyl ammonium-propane sulfonate, DDAPS, micelles, DDAPS/butanol mixtures and in oil-in-water microemulsions stabilized by DDAPS. J. Solution Chem. 42, 657–665 (2013)

    Article  CAS  Google Scholar 

  26. Yokoyama, M.: Block copolymers as drug carriers. Crit. Rev. Ther. Drug Carrier Syst. 9, 213–248 (1992)

    CAS  Google Scholar 

  27. Rangel-YaguiI, C.O., Hsu, H.W.L., Pessoa, J.A., Tavares, L.C.: Micellar solubilization of ibuprofen — The influence of surfactant head on the extent of solubilization. Braz. J. Pharm. Sci. 41, 237–246 (2005)

    Google Scholar 

  28. Pennell, K.D., Abriola, L.M., Weber, W.: Surfactant enhanced solubilization of residual dodecane in soil columns. J. Environ. Sci. Technol. 27, 2332–2340 (1993)

    Article  CAS  Google Scholar 

  29. Dar, A.A., Rather, G.M., Das, A.R.: Mixed micelle formation and solubilization behaviour towards polycyclic aromatic hydrocarbons of binary and ternary cationic–nonionic surfactant mixtures. J. Phys. Chem. B 111, 3122–3132 (2007)

    Article  CAS  Google Scholar 

  30. Huglin, M.B.: Light Scattering from Polymer Solution. Academic Press, London (1972)

    Google Scholar 

Download references

Acknowledgments

The corresponding author is highly thankful to the Higher Education Commission (HEC), Pakistan for the financial support under IRSIP, Indigenous 5000 Ph.D Fellowship Scheme and IPFP. Further, he expresses special thanks to the Department of Chemistry and High Technology Research Centre, Gomal University, Dera Ismail Khan, Pakistan for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Ullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, I., Baloch, M.K., Ullah, I. et al. Enhancement in Aqueous Solubility of Mefenamic Acid using Micellar Solutions of Various Surfactants. J Solution Chem 43, 1360–1373 (2014). https://doi.org/10.1007/s10953-014-0217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0217-9

Keywords

Navigation