Skip to main content
Log in

Complex Formation Equilibria of Unusual Seven Coordinate Fe(III) Complexes with DNA Constituents

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Seven-coordinate Fe(III) complexes [Fe(dapsox)(H2O)2]+, where [dapsox = 2,6-diacetylpyridine-bis(semioxamazide)] is an equatorial pentadentate ligand with five donor atoms (2O and 3N), were studied with regard to their acid–base properties and complex formation equilibria. Stability constants of the complexes and the pK a values of the ligands were measured by potentiometric titration. The interaction of [Fe(dapsox)(H2O)2]+ with the DNA constituents, imidazole and methylamine·HCl were investigated at 25 °C and ionic strength 0.1 mol·dm−3 NaNO3. The hydrolysis constants of the [Fe(dapsox)(H2O)2]+ cation (pK a1 = 5.94 and pK a2 = 9.04), the induced ionization of the amide bond and the formation constants of the complexes formed in solution were calculated using the nonlinear least-squares program MINIQUAD-75. The stoichiometry and stability constants for the complexes formed are reported. The results show the formation of 1:1 and 1:2 complexes with DNA constituents supporting the hepta-coordination mode of Fe(III). The concentration distributions of the various complex species were evaluated as a function of pH. The thermodynamic parameters ΔH° and ΔS° calculated from the temperature dependence of the equilibrium constants were investigated for interaction of [Fe(dapsox)(H2O)2] with uridine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sharma, V.K., Pandey, O.P., Sengupta, S.K., Halepoto, D.M.: Synthesis, spectroscopic and thermal studies on ruthenium(III), rhodium(III) and iridium(III) complexes with hydrazones derived from 2,6-diacetylpyridine and different aromatic hydrazides. Trans. Met. Chem. 14, 263–266 (1989)

    Article  CAS  Google Scholar 

  2. El-Toukhy, A.: Stoichiometry, products and kinetics of oxidation of neutral 2,6-diacetylpyridine-bis(N 4-azacyclic thiosemicarbazone)cobalt(II) complexes by dioxygen in aprotic solvents. Inorg. Chim. Acta 180, 85–91 (1991)

    Article  CAS  Google Scholar 

  3. Mohan, M., Agarwal, A., Jha, N.K.: Synthesis, characterization, and antitumor properties of some metal complexes of 2,6-diacetylpyridine bis(N 4-azacyclic thiosemicarbazones). J. Inorg. Biochem. 34, 41–54 (1988)

    Article  CAS  Google Scholar 

  4. Azaz, A.D., Celen, S., Namli, H., Turhan, O., Kurtaran, R., Kazak, C., Arslan, N.B.: Synthesis, crystal structure and biological activity of the nickel(II) complex of 2,6-diacetylpyridinedihydrazone. Trans. Met. Chem. 32, 884–888 (2007)

    Article  CAS  Google Scholar 

  5. De Sousa, G.F., Deflon, V.M., Gambardella, M.T., Do, P., Francisco, R.H.P., Ardisson, J.D., Niquet, E.: X-ray crystallographic and Mössbauer spectroscopic applications in dependence of partial quadrupole splitting, [R], on the C–Sn–C angle in seven-coordinated diorganotin(IV) complexes. Inorg. Chem. 45, 4518–4525 (2006)

    Article  Google Scholar 

  6. Maji, M., Ghosh, S., Chattopadhyay, S.K.: Ruthenium(II) complexes containing the pentadentate SNNNS chelating ligand 2,6-diacetylpyridine bis(4-(p-tolyl) thiosemicarbazide: synthesis, reactivity and electrochemistry. Trans. Met. Chem. 23, 85–88 (1998)

    Article  Google Scholar 

  7. Liberta, A.E., West, D.X.: Antifungal and antitumor activity of heterocyclic thiosemicarbazones and their metal complexes: current status. Biometals 5, 121–126 (1992)

    Article  CAS  Google Scholar 

  8. De Sousa, G.F., Mangas, M.B.P., Francisco, R.H.P., Gambardella, M.T.P., Rodrigues, A.M.G.D., Barras, A.: New heptacoordinated organotin(IV) complexes derivatives of 2,6-diacetylpyridinebis(2-furanoylhydrazone), and 2,6-diacetylpyridinebis(2-thenoylhydrazone), H2dapt. Crystal and molecular structure of [Me2Sn(Hdapt)]Br·H2O. J. Braz. Chem. Soc. 10, 222–230 (1999)

    Article  Google Scholar 

  9. Bachhi, A., Pelizzi, G.: Synthesis and structural characterization of copper(II) complexes with the 2′-[1-(2-pyridinyl)ethylidene]oxalohydrazide ligand. Trans. Met. Chem. 28, 935–938 (2003)

    Article  Google Scholar 

  10. Pelizzi, C., Pelizzi, G., Predieri, G.: Investigation into aroylhydrazones as chelating agents. V. Synthesis and structural characterization of two seven-coordinate organotin(IV) complexes with 2,6-diacetylpyridine bis(2-aminobenzoylhydrazone). J. Organomet. Chem. 263, 9–20 (1984)

    Article  CAS  Google Scholar 

  11. Wester, D.W., Palenik, G.J.: Pentagonal–bipyramidal complexes. Synthesis and characterization of cobalt(II) and zinc(II) complexes of neutral and dianionic 2,6-diacetylpyridinebis(2′-pyridylhydrazone). Inorg. Chem. 15, 755–761 (1976)

    Article  CAS  Google Scholar 

  12. Bino, A., Frim, R., Genderen, M.V.: Three coordination modes of the pentadentate ligand 2,6-diacetylpyridinedisemicarbazone. Inorg. Chim. Acta 127, 95–101 (1987)

    Article  CAS  Google Scholar 

  13. Brown, C.A., Kaminsky, W., Claborn, K.A., Goldbery, K.I., West, D.X.: Structural studies of 2,6-diacetyl- and 2,6-diformylpyridine bis(thiosemicarbazones). J. Braz. Chem. Soc. 13, 10–15 (2002)

    Article  CAS  Google Scholar 

  14. Mohan, M., Sharma, P., Jha, N.K.: Some metal(II) chelates of 4-(m-aminophenyl)-2-formylpyridine thiosemicarbazone: their preparation, characterization and antitumour activity. Inorg. Chim. Acta 107, 91–95 (1985)

    Article  CAS  Google Scholar 

  15. Mohan, M., Sharma, P., Kumar, M.: Metal complexes of 2,6-diacetylpyridine bis(thiosemicarbazone): their preparation, characterization and antitumour activity. Inorg. Chim. Acta 125, 9–15 (1986)

    Article  CAS  Google Scholar 

  16. Wester, D., Palenik, G.J.: Synthesis and characterization of novel pentagonal bipyramidal complexes of iron(II), cobalt(II), and zinc(II). J. Am. Chem. Soc. 95, 6505–6506 (1973)

    Article  CAS  Google Scholar 

  17. Wester, D., Palenik, G.J.: Pentagonal bipyramidal complexes of nickel(II) and copper(II). Relative importance of ligand geometry vs. crystal field effects. J. Am. Chem. Soc. 96, 7565–7566 (1974)

    Article  CAS  Google Scholar 

  18. Koziol, A.K., Palenik, R.C., Palenik, G.J., Wester, D.: Structural studies of copper catalyzed hydroxylation reactions. Inorg. Chim. Acta 359, 2569–2574 (2006)

    Article  CAS  Google Scholar 

  19. Zhang, D., Busch, D.H., Lennon, P.L., Weiss, R.H., Neumann, W.L., Riley, D.P.: Iron(III) complexes as superoxide dismutase mimics: synthesis, characterization, crystal structure, and superoxide dismutase (SOD) activity of iron(III) complexes containing pentaaza macrocyclic ligands. Inorg. Chem. 37, 956–963 (1998)

    Article  CAS  Google Scholar 

  20. Riley, D.P.: Functional mimics of superoxide dismutase enzymes as therapeutic agents. Chem. Rev. 99, 2573–2588 (1999)

    Article  CAS  Google Scholar 

  21. Salvemini, D., Wang, Z., Zweier, J.L., Samouilov, A., Macarthur, H., Misko, T.P., Currie, M.G., Cuzzocrea, S., Sikorski, J.A., Riley, D.P.: A nonpeptidyl mimic of superoxide dismutase with therapeutic activity in rats. Science 286, 304–306 (1999)

    Article  CAS  Google Scholar 

  22. Cabelli, D.E., Riley, D., Rodriguez, J.A., Valentine, J.S., Zhu, H.: Models of superoxide dismutases. In: Meunier, B. (ed.) Biomimetic Oxidations Catalyzed by Transition Metal Complexes, pp. 461–508. Imperial College Press, London (2000)

  23. Salvemini, D., Riley, D.P., Cuzzocrea, S.: SOD mimetics are coming of age. Nat. Rev. Drug Discov. 1, 367–374 (2002)

    Article  CAS  Google Scholar 

  24. Muscoli, C., Cuzzocrea, S., Riley, D.P., Zweier, J.L., Thiemermann, C., Wang, Z.-Q., Salvemini, D.: On the selectivity of superoxide dismutase mimetics and its importance in pharmacological studies. Br. J. Pharmacol. 140, 445–460 (2003)

    Article  CAS  Google Scholar 

  25. Aston, K., Rath, N., Nauk, A., Slomczynska, U., Schall, O.F., Riley, D.P.: Computer-aided design (CAD) of Mn(II) complexes: superoxide dismutase mimetics with catalytic activity exceeding the native enzyme. Inorg. Chem. 40, 1779–1789 (2001)

    Article  CAS  Google Scholar 

  26. El-Sherif, A.A., Shoukry, M.M., Hosny, W.M., Abd-Elmoghny, M.G.: Complex formation equilibria of unusual seven coordinate Fe(EDTA) complex with DNA constituents and related bio-relevant ligands. J. Solution Chem. 41, 813–827 (2012)

    Article  CAS  Google Scholar 

  27. Ivanović-Burmazović, I., Hamza, M.S.A., van Eldik, R.: A detailed mechanistic study of the substitution behavior of unusual seven-coordinate iron(III) complex in aqueous solution. Inorg. Chem. 41, 5150–5161 (2002)

    Article  Google Scholar 

  28. Nelson, S.M.: Developments in the synthesis and coordination chemistry of macrocyclic Schiff base ligands. Pure Appl. Chem. 52, 2461–2476 (1980), (and references therein)

    Article  CAS  Google Scholar 

  29. Ivanović-Burmazović, I., Andjelkovic, K.: Transition metal complexes with bis(hydrazone) ligands of 2,6-diacetylpyridine. Hepta-coordination of 3d metals. Adv. Inorg. Chem. 55, 315–360 (2004)

    Article  Google Scholar 

  30. El-Sherif, A.A., Jeragh, B.J.A.: Mixed ligand complexes of Cu(II)-2-(2-pyridyl)-benzimidazole and aliphatic or aromatic dicarboxylic acids: synthesis, characterization and biological activity. Spectrochim. Acta A 68, 877–882 (2007)

    Article  Google Scholar 

  31. El-Sherif, A.A., Shoukry, M.M.: Copper(II) complexes of imino-bis(methyl phosphonic acid) with some bio-relevant ligands. Equilibrium studies and hydrolysis of glycine methyl ester through complex formation. J. Coord. Chem. 58, 1401–1415 (2005)

    Article  CAS  Google Scholar 

  32. El-Sherif, A.A., Shoukry, M.M.: The palladium(II)–picolylamine promoted hydrolysis of amino acid ester. Kinetic evidence for inter- and intramolecular mechanisms. J. Prog. React. Kinet. Mech. 36, 215–226 (2011)

    Article  Google Scholar 

  33. El-Sherif, A.A., Shoukry, M.M.: Equilibrium investigation of complex formation reactions involving copper(II), nitrilo-tris(methyl phosphonic acid) and amino acids, peptides or DNA constituents. The kinetics, mechanism and correlation of rates with complex stability for metal ion promoted hydrolysis of glycine methyl ester. J. Coord. Chem. 59, 1541–1556 (2006)

    Article  CAS  Google Scholar 

  34. El-Sherif, A.A., Shoukry, M.M., El-Bahnasawy, R.M., Ahmed, D.M.: Complex formation reactions of palladium(II)-1,3-diaminopropane with various biologically relevant ligands. Kinetics of hydrolysis of glycine methyl ester through complex formation. Cent. Eur. J. Chem. 8, 919–927 (2010)

    Article  CAS  Google Scholar 

  35. El-Sherif, A.A.: Kinetics and mechanism for α-amino acid esters in mixed ligand complexes with Zn(II)-nitrilo-tris(methyl phosphonic acid). J. Solution Chem. 360, 473–487 (2007)

    CAS  Google Scholar 

  36. Aljahdali, M., El-Sherif, A.A.: Equilibrium studies of binary and mixed-ligand complexes of zinc(II) involving 2-(aminomethyl)-benzimidazole and some bio-relevant ligand. J. Solution Chem. 41, 1759–1776 (2012)

    Article  CAS  Google Scholar 

  37. El-Sherif, A.A.: Synthesis and characterization of some potential antitumor palladium(II) complexes of 2-aminomethylbenzimidazole and amino acids. J. Coord. Chem. 64, 2035–2055 (2011)

    Article  CAS  Google Scholar 

  38. Mohamed, M.M.A., El-Sherif, A.A.: Complex formation equilibria between zinc(II), nitrilo-tris(methyl phosphonic Acid) and some bio-relevant ligands. The kinetics and mechanism for zinc(II) ion promoted hydrolysis of glycine methyl ester. J. Solution Chem. 39, 639–653 (2010)

    Article  CAS  Google Scholar 

  39. El-Sherif, A.A.: Mixed ligand complex formation reactions and equilibrium studies of Cu(II) with bidentate heterocyclic alcohol (N, O) and some bio-relevant ligands. J. Solution Chem. 39, 131–150 (2010)

    Article  CAS  Google Scholar 

  40. El-Sherif, A.A., Shoukry, M.M.: Coordination properties of tridentate (N,O,O) heterocyclic alcohol (PDC) with Cu(II). Mixed ligand complex formation reactions of Cu(II) with (PDC) and some bio-relevant ligands. Spectrochim. Acta A. 66, 691–700 (2007)

    Article  Google Scholar 

  41. El-Sherif, A.A.: Coordination properties of bidentate (N, O) and tridentate (N, O, O) heterocyclic alcohols with dimethyltin(IV) ion. J. Coord. Chem. 64, 1240–1253 (2011)

    Article  CAS  Google Scholar 

  42. Gans, P., Sabatini, A., Vacca, A.: An improved computer program for the computation of formation constants from potentiometric data. Inorg. Chim. Acta 18, 237–239 (1976)

    Article  CAS  Google Scholar 

  43. Pettit L.: (University of Leeds, U.K), personal communication

  44. Andjelković, K., Bacchi, A., Pelizzi, G., Jeremic, D., Ivanović-Burmazović, I.: An Fe(III) complex with the dianionic form of 2,6-diacetylpyridine bis(acylhydrazone). The crystal structure of [diaqua-2′,2″-(2,6-pyridinediyldiethylidyne)dioxamo-hydrazide]iron(III) perchlorate trihydrate, [Fe(dapsox)(H2O)2]ClO4·3H2O. J. Coord. Chem. 55, 1385–1392 (2002)

    Article  Google Scholar 

  45. Rees, D.C.: Experimental evaluation of the effective dielectric constant of proteins. J. Mol. Biol. 141, 323–326 (1980)

    Article  CAS  Google Scholar 

  46. Maskos, K.: The interaction of metal ions with nucleic acids. A nuclear magnetic resonance relaxation time study of the copper(II)–inosine 5′-monophosphate system in solution. Acta Biochem. Pol. 28, 183–200 (1981)

    CAS  Google Scholar 

  47. Maskos, K.: Spectroscopic studies on the copper(II)–inosine system. Inorg. Biochem. 25, 1–14 (1985)

    Article  CAS  Google Scholar 

  48. Sigel, H. (ed.): Metal Ions in Biological Systems, vol. 8, 6th edn, pp. 57–124. Marcel Dekker, New York (1979)

  49. Noszol, B., Scheller-Krattiger, V., Martin, R.B.: A unified view of carbon bound hydrogen exchange of H(2) in imidazoles and H(8) in purine nucleosides and their metal ion complexes. J. Am. Chem. Soc. 104, 1078–1081 (1982)

    Article  Google Scholar 

  50. Jardetzky, O., Pappas, P., Waide, N.G.: Proton magnetic resonance studies of purine and pyrimidine derivatives. IX. The protonation of pyrimidine in acid solution. J. Am. Chem. Soc. 85, 1657–1658 (1963)

    Article  CAS  Google Scholar 

  51. Benoit, R.L., Frechette, M.: 1H and 13C nuclear magnetic resonance and ultraviolet studies of the protonation of cytosine, uracil, thymine, and related compounds. Can. J. Chem. 64, 2348–2352 (1986)

    Article  CAS  Google Scholar 

  52. Roberts, B.W., Lambert, J.B., Roberts, J.D.: Nitrogen-15 magnetic resonance spectroscopy. VI. Pyrimidine derivatives. J. Am. Chem. Soc. 87, 5439–5441 (1965)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. El-Sherif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aljahdali, M., El-Sherif, A.A., Shoukry, M.M. et al. Complex Formation Equilibria of Unusual Seven Coordinate Fe(III) Complexes with DNA Constituents. J Solution Chem 42, 1663–1679 (2013). https://doi.org/10.1007/s10953-013-0055-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0055-1

Keywords

Navigation