Skip to main content
Log in

Correspondence Between Grunberg–Nissan, Arrhenius and Jouyban–Acree Parameters for Viscosity of Isobutyric Acid + Water Binary Mixtures from 302.15 to 313.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The study of physical properties of binary liquid mixtures is of great importance for understanding and characterizing intermolecular interactions. Similarly, some models attempt to correlate viscosity in liquid mixtures in order to illuminate interacting structures and peculiar behaviors. Grunberg–Nissan parameters for viscosity (η) in isobutyric acid + water mixtures over the entire range of mole fractions under atmospheric pressure and from 302.15 to 313.15 K were calculated from experimental dynamic viscosities presented in previous works. Many experimenters investigate physicochemical properties using various models to develop interpretations and conclusions. The present work comes within the framework of correlating different equations. Relationships between the Grunberg–Nissan and Arrhenius and Jouyban–Acree parameters for viscosity are shown in one critical binary mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ouerfelli, N., Bouanz, M.: Excess molar volume and viscosity of isobutyric acid + water binary mixtures near and far away from the critical temperature. J. Solution Chem. 35, 121–137 (2006)

    Article  CAS  Google Scholar 

  2. Toumi, A., Bouanz, M.: Volumetric and refractive index properties of isobutyric acid–water binary mixtures at temperatures ranging from 300.15 to 313.15 K. J. Mol. Liq. 139, 55–60 (2008)

    Article  CAS  Google Scholar 

  3. Ouerfelli, N., Kouissi, T., Zrelli, N., Bouanz, M.: Competition of correlation viscosities equations in isobutyric acid + water binary mixtures near and far away from the critical temperature. J. Solution Chem. 38, 983–1004 (2009)

    Article  CAS  Google Scholar 

  4. Cherif, E., Ouerfelli, N., Bouaziz, M.: Competition between Redlich–Kister and adapted Herráez equations of correlation conductivities in isobutyric acid + water binary mixtures near and far away from the critical temperature. Phys. Chem. Liq. 49, 155–171 (2011)

    Article  CAS  Google Scholar 

  5. Ouerfelli, N., Messaâdi, A., Bel Hadj H’mida, E., Cherif, E., Amdouni, N.: Validity of the correlation-Belda equation for some physical and chemical properties in isobutyric acid + water mixtures near and far away from critical temperature. Phys. Chem. Liq. 49, 655–672 (2011)

    Article  CAS  Google Scholar 

  6. Greer, S.C.: Coexistence curves at liquid–liquid critical points: Ising exponents and extended scaling. Phys. Rev. A. 14, 1770–1780 (1976)

    Article  CAS  Google Scholar 

  7. Venkataraman, T.S., Narducci, L.M.: Critical properties of the binary fluid system-isobutyric acid–water. J. Phys. C: Solid State Phys. 10, 2849–2861 (1977)

    Article  CAS  Google Scholar 

  8. Wong, N.C., Knobler, C.M.: Light scattering studies of phase separation in isobutyric acid + water mixtures. J. Chem. Phys. 69, 725–735 (1978)

    Article  CAS  Google Scholar 

  9. Chou, Y.C., Goldburg, W.I.: Phase separation and coalescence in critically quenched isobutyric acid + water and 2,6-lutidine + water mixtures. Phys. Rev. A 20, 2105–2113 (1979)

    Article  CAS  Google Scholar 

  10. Chou, Y.C., Goldburg, W.I.: Angular distribution of light scattered from critically quenched liquid mixtures. Phys. Rev. A 23, 858–964 (1981)

    Article  CAS  Google Scholar 

  11. Beysens, D., Bourgou, A., Calmettes, P.: Experimental determinations of universal amplitude combinations for binary fluids. I. Statics. Phys. Rev. A 26, 3589–3609 (1982)

    Article  CAS  Google Scholar 

  12. Maher, J.V., Goldburg, W.I., Phol, D.W., Lanz, M.: Critical behavior in gels saturated with binary liquid mixtures. Phys. Rev. Lett. 53, 60–63 (1984)

    Article  CAS  Google Scholar 

  13. Andrew, W.V., Khoo, T.B.K., Jacobs, D.T.: Testing the Lorentz–Lorenz relation in the near-critical binary fluid mixture isobutyric acid and water. J. Chem. Phys. 85, 3985–3991 (1986)

    Article  CAS  Google Scholar 

  14. Berg, R.F., Moldover, M.R.: Critical exponent for the viscosity of four binary liquids. J. Chem. Phys. 89, 3694–3704 (1988)

    Article  CAS  Google Scholar 

  15. Jacobs, D.T., Greer, S.C.: Amplitude of the anomaly in the mass density near a liquid–liquid critical point. Phys. Rev. E 54, 5358–5363 (1996)

    Article  CAS  Google Scholar 

  16. Redlich, O., Kister, A.T.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)

    Article  Google Scholar 

  17. Grunberg, L., Nissan, A.H.: Mixture law for viscosity. Nature 164, 799–800 (1949)

    Article  CAS  Google Scholar 

  18. Hind, R.H., McLaughlin, E., Ubbelohde, A.R.: Structure and viscosity of liquids—camphor and pyrene mixtures. Trans. Faraday Soc. 56, 328–334 (1960)

    Article  CAS  Google Scholar 

  19. Katti, P.K., Chaudhri, M.M.: Viscosities of binary mixtures of benzyl acetate with dioxane, aniline and m-cresol. J. Chem. Eng. Data 9, 442–443 (1964)

    Article  CAS  Google Scholar 

  20. Heric, E.L., Brewer, J.C.: Viscosity of some binary liquid nonelectrolyte mixtures. J. Chem. Eng. Data 12, 574–583 (1967)

    Article  CAS  Google Scholar 

  21. McAllister, R.A.: The viscosities of liquid mixtures. AIChE J. 6, 427–431 (1960)

    Article  CAS  Google Scholar 

  22. Auslander, G.: Prediction of the McAllister model parameters from pure component properties for liquid binary n-alkane systems. Br. Chem. Eng. 9, 610–618 (1964)

    Google Scholar 

  23. Tasic, A.Z., Djordjevic, B.D., Grozdanic, D.K., Radojkovic, N.: Use of mixing rules in some binary liquid mixtures. J. Chem. Eng. Data 37, 310–313 (1992)

    Article  CAS  Google Scholar 

  24. Lorentz, A.: Theory of Electrons. Dover Phoenix, New York (1952)

    Google Scholar 

  25. Kahl, H., Wadewitz, T., Winkelmann, J.: Surface tension and interfacial tension of binary organic liquid mixtures. J. Chem. Eng. Data 48, 1500–1507 (2003)

    Article  CAS  Google Scholar 

  26. Gladstone, J.H., Dale, T.P.: On the influence of temperature on the refraction of light. Philos. Trans. R. Soc. Lond. 148, 887–894 (1858)

    Article  Google Scholar 

  27. Reid, R.C., Prausnitz, J.M., Sherwood, T.K.: The Properties of Gases and Liquids. McGraw Hill, New York (1977)

    Google Scholar 

  28. Kijevčanin, M.L.J., Kostič, V.Z., Radovič, I.R., Djordjevič, B.D., Šerbanovič, S.D.: Viscosity of binary non-electrolyte liquid mixtures: prediction and correlation. Chem. Ind. Chem. Eng. Quart. 14, 223–226 (2008)

    Article  Google Scholar 

  29. Guettari, M., Gharbi, A.: A correspondence between Grunberg–Nissan constant d’ and complex varieties in water/methanol mixture. Phys. Chem. Liq. 49, 459–469 (2011)

    Article  CAS  Google Scholar 

  30. Fort, R.J., Moore, W.R.: Viscosities of binary liquid mixtures. Trans. Faraday Soc. 62, 1112–1119 (1966)

    Article  CAS  Google Scholar 

  31. Colter, A.K., Grunwald, E.: Application of differential refractometry to the measurement of association constants for molecular complex formation. J. Phys. Chem. 74, 3637–3642 (1970)

    Article  CAS  Google Scholar 

  32. Erdey Gruz, T.: Transport Phenomena in Aqueous Solutions. AH PB, London (1958)

    Google Scholar 

  33. Falkenhagen, H.: Theorie der Elektrolyte. S. Hirzel, Leipzig (1971)

    Google Scholar 

  34. Janz, G.J., Tomkins, R.P.T.: Non Aqueous Electrolytes Handbook, vol. 1. Academic Press, London (1972)

    Google Scholar 

  35. Levitte, B.P.: Findlay’s Practical Physical Chemistry, 9th edn. Longman, New York (1973)

    Google Scholar 

  36. Van Ness, H.C., Abbott, M.M.: Classical Thermodynamics of Nonelectrolyte Solutions. McGraw-Hill, New York (1982)

    Google Scholar 

  37. Ouerfelli, N., Barhoumi, Z., Besbes, R., Amdouni, N.: The reduced Redlich–Kister excess molar Gibbs energy of activation of viscous flow and derived properties in 1,4-dioxane + water binary mixtures from 293.15 K to 309.15 K. Phys. Chem. Liq. 49, 777–800 (2011)

    Article  CAS  Google Scholar 

  38. Ouerfelli, N., Kouissi, T., Iulian, O.: The relative reduced Redlich–Kister and Herráez equations for correlation viscosities of 1,4-dioxane + water mixtures at temperatures from 293.15 K to 323.15 K. J. Solution Chem. 39, 57–75 (2010)

    Article  CAS  Google Scholar 

  39. Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929)

    Article  CAS  Google Scholar 

  40. Longuet-Higgins, H.C.: The statistical thermodynamics of multicomponent systems. Proc. Roy. Soc. 205 A, 247–269 (1951)

    Google Scholar 

  41. Matsubayashi, N., Nakahara, M.: Dynamics in regular solution: concentration and viscosity dependence of orientational correlation of a benzene molecule. J. Chem. Phys. 94, 653–661 (1991)

    Article  CAS  Google Scholar 

  42. Nakagawa, T.: Is viscosity B coefficient characteristic for solute–solvent interaction? J. Mol. Liq. 63, 303–316 (1995)

    Article  CAS  Google Scholar 

  43. de Ruiz Holgado, M.E., de Schaefer, C.R., Araneibia, E.L.: Viscosity study of 1-propanol with polyethylene glycol 350 monomethyl ether systems at different temperatures. J. Mol. Liq. 79, 257–267 (1999)

    Article  Google Scholar 

  44. Herráez, J.V., Belda, R., Diez, O., Herráez, M.: An equation for the correlation of viscosities of binary mixtures. J. Solution Chem. 37, 233–248 (2008)

    Article  Google Scholar 

  45. Ouerfelli, N., Iulian, O., Bouaziz, M.: Competition between Redlich–Kister and improved Herráez equations of correlation viscosities in 1,4-dioxane + water binary mixtures at different temperatures. Phys. Chem. Liq. 48, 488–513 (2010)

    Article  CAS  Google Scholar 

  46. Jouyban, A., Khoubnasabjafari, M., Vaez-Gharamaleki, Z., Fekari, Z., Acree Jr., W.E.: Calculation of the viscosity of binary liquids at various temperatures using Jouyban–Acree model. Chem. Pharm. Bull. 53, 519–523 (2005)

    Article  CAS  Google Scholar 

  47. Flanagan, K.B., Hoover, K.R., Garza, O., Hizon, A., Soto, T., Villegas, N., Acree Jr., W.E., Abraham, M.H.: Mathematical correlation of 1-chloroanthraquinone solubilities in organic solvents with the Abraham solvation parameter model. Phys. Chem. Liq. 44, 377–386 (2006)

    Article  CAS  Google Scholar 

  48. Jouyban, A., Maljaei, S.H., Soltanpour, Sh., Fakhree, M.A.A.: Prediction of viscosity of binary solvent mixtures at various temperatures. J. Mol. Liq. 162, 50–68 (2011)

    Article  CAS  Google Scholar 

  49. Acree Jr., W.E.: Mathematical representation of thermodynamic properties: 2. Derivation of the combined nearly ideal binary solvent (NIBS)/Redlich–Kister mathematical representation from a two- and three-body interactional mixing model. Thermochim. Acta 198, 71–79 (1992)

    Article  CAS  Google Scholar 

  50. Ouerfelli, N., Barhoumi, Z., Iulian, O.: Investigations of the Arrhenius activation energy of viscosity and derived partial molar properties in 1,4-dioxane + water binary mixtures from 293.15 K to 323.15 K. J. Solution Chem. 41, 458–474 (2011)

    Google Scholar 

  51. Ludwig, R.: Water: from clusters to the bulk. Angew. Chem. Int. Ed. 40, 1808–1827 (2001)

    Article  CAS  Google Scholar 

  52. Eyring, H., John, M.S.: Significant Liquid Structure. Wiley, New York (1969)

    Google Scholar 

  53. Ali, A., Nain, A.K., Hyder, S.: Ion–solvent interaction of sodium iodide and lithium nitrate in N, N-dimethylformamide + ethanol mixtures at various temperatures. J. Indian Chem. Soc. 75, 501–505 (1998)

    CAS  Google Scholar 

  54. Leaist, D.G., MacEwan, K., Stefan, A., Zamari, M.: Binary mutual diffusion coefficients of aqueous cyclic ethers at 25°. Tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, 1,3-dioxane, tetrahydropyran, and trioxane. J. Chem. Eng. Data 45, 815–818 (2000)

    Article  CAS  Google Scholar 

  55. Iulian, O., Ciocîrlan, O.: Viscosity and density of systems with water, 1,4-dioxane and ethylene glycol between (293.15 and 313.15) K. I. Binary systems. Rev. Roum. Chim. 55, 45–53 (2010)

    CAS  Google Scholar 

  56. Desnoyers, J.E., Perron, G.: Treatment of excess thermodynamic quantities for liquid mixtures. J. Solution Chem. 26, 749–755 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. M. Guettari (I.P.E.I.B. Tunisia) for helpful discussions and suggestions. Our thanks should be addressed to Prof. J.V. Herráez (U.V. Valencia, Spain) for fruitful correspondences and clarifying discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ouerfelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Messaâdi, A., Ouerfelli, N., Das, D. et al. Correspondence Between Grunberg–Nissan, Arrhenius and Jouyban–Acree Parameters for Viscosity of Isobutyric Acid + Water Binary Mixtures from 302.15 to 313.15 K. J Solution Chem 41, 2186–2208 (2012). https://doi.org/10.1007/s10953-012-9931-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9931-3

Keywords

Navigation