Skip to main content
Log in

Competition of Viscosity Correlation Equations in Isobutyric Acid + Water Binary Mixtures Near and Far Away from the Critical Temperature

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Shear viscosity deviations Δη have been investigated by using density (ρ) and kinematic viscosity (ν) measurements for isobutyric acid + water (IBA + W) mixtures over the entire range of mole fractions at atmospheric pressure and at two temperatures (301.15 and 315.15 K). This study extends the temperature range from the five other temperatures investigated in a previous work, 1.055 K≤(TT c )≤14.055 K, both far from and close to the critical temperature. This system exhibits very large positive values of Δη due to increased hydrogen bonding interactions and the correlation length between unlike molecules in the critical region, and to very large differences between the molar volumes of the pure components at low temperatures. The results were also fitted with the Redlich–Kister polynomial equations and the recently proposed Herráez correlation equation. Comparisons between the two models at different temperatures and number of parameters are discussed. We note that, in this system where the shear viscosity η as a function of mole fraction (x 1) of IBA presents a maximum, experimental data are in agreement with the two correlation models when more than three parameters are employed, especially for temperatures far from the critical temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toumi, A., Bouanz, M.: Critical behavior of the binary-fluid isobutyric acid-water with added ion (K+, Cl). Eur. Phys. J. E 2, 211–216 (2000). doi:10.1007/PL00013667

    Article  CAS  Google Scholar 

  2. Toumi, A., Bouanz, M., Gharbi, A.: Coexistence curves of the binary mixture isobutyric acid-water with added ions (K+, Cl). Chem. Phys. Lett. 362, 567–573 (2002). doi:10.1016/S0009-2614(02)01107-7

    Article  CAS  Google Scholar 

  3. Toumi, A., Bouanz, M.: Effect of the (K+, Cl) ions on the order parameters and on the Lorenz-Lorentz relation in the isobutyric acid-water critical mixture. J. Mol. Liq. 122, 74–83 (2005). doi:10.1016/j.molliq.2005.05.001

    Article  CAS  Google Scholar 

  4. Ouerfelli, N., Bouanz, M.: Excess molar volume and viscosity of isobutyric acid + water binary mixtures near and far away from the critical temperature. J. Solut. Chem. 35(1), 121–137 (2006). doi:10.1007/s10953-006-8944-1

    Article  CAS  Google Scholar 

  5. Greer, S.C.: Coexistence curves at liquid-liquid critical points: Ising exponents and extended scaling. Phys. Rev. A 14, 1770–1780 (1976). doi:10.1103/PhysRevA.14.1770

    Article  CAS  Google Scholar 

  6. Venkataraman, T.S., Narducci, L.M.: Critical properties of the binary fluid system—isobutyric acid–water. J. Phys. C, Solid State Phys. 10, 2849–2861 (1977). doi:10.1088/0022-3719/10/15/019

    Article  CAS  Google Scholar 

  7. Wong, N.C., Knobler, C.M.: Light scattering studies of phase separation in isobutyric acid + water mixtures. J. Chem. Phys. 69(2), 725–735 (1978). doi:10.1063/1.436582

    Article  CAS  Google Scholar 

  8. Chou, Y.C., Goldburg, W.I.: Phase separation and coalescence in critically quenched isobutyric acid + water and 2,6-lutidine + water mixtures. Phys. Rev. A 20, 2105–2113 (1979). doi:10.1103/PhysRevA.20.2105

    Article  CAS  Google Scholar 

  9. Chou, Y.C., Goldburg, W.I.: Angular distribution of light scattered from critically quenched liquid mixtures. Phys. Rev. A 23, 858–964 (1981). doi:10.1103/PhysRevA.23.858

    Article  CAS  Google Scholar 

  10. Beysens, D., Bourgou, A., Calmettes, P.: Experimental determinations of universal amplitude combinations for binary fluids. I. Statics. Phys. Rev. A 26, 3589–3609 (1982). doi:10.1103/PhysRevA.26.3589

    Article  CAS  Google Scholar 

  11. Maher, J.V., Goldburg, W.I., Phol, D.W., Lanz, M.: Critical behavior in gels saturated with binary liquid mixtures. Phys. Rev. Lett. 53, 60–63 (1984). doi:10.1103/PhysRevLett.53.60

    Article  CAS  Google Scholar 

  12. Andrew, W.V., Khoo, T.B.K., Jacobs, D.T.: Testing the Lorentz–Lorenz relation in the near-critical binary fluid mixture isobutyric acid and water. J. Chem. Phys. 85(7), 3985–3991 (1986). doi:10.1063/1.450920

    Article  CAS  Google Scholar 

  13. Xia, K.Q., Maher, J.V.: Dynamic light scattering from binary-liquid gels. Phys. Rev. A 37, 3626–3629 (1988)

    Article  CAS  Google Scholar 

  14. Berg, R.F., Moldover, M.R.: Critical exponent for the viscosity of four binary liquids. J. Chem. Phys. 89(6), 3694–3704 (1988)

    Article  CAS  Google Scholar 

  15. Jacobs, D.T., Greer, S.C.: Amplitude of the anomaly in the mass density near a liquid-liquid critical point. Phys. Rev. E 54, 5358–5363 (1996)

    Article  CAS  Google Scholar 

  16. Venkatesu, P.: Polymer modifies the critical region of the coexisting liquid phases. J. Phys. Chem. B 110, 17339–17346 (2006)

    Article  CAS  Google Scholar 

  17. Herráez, J.V., Belda, R., Diez, O., Herráez, M.: An equation for the correlation of viscosities of binary mixtures. J. Sol. Chem. 37(2), 233–248 (2008)

    Article  Google Scholar 

  18. Redlich, O., Kister, A.T.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)

    Article  Google Scholar 

  19. Beysens, D., Bourgou, A.: Accurate determination of alpha and Delta exponents in critical binary fluids by refractive-index measurements. Phys. Rev. A 19, 2407–2412 (1979)

    Article  CAS  Google Scholar 

  20. Physikalisch-Technische Bundesanstalt, 2nd edn., licence, Nr. 13/1985, p. 6, Chempro GmbH, D6450 Hanau (1985)

  21. Ouerfelli, N., Bouanz, M.: A shear viscosity study of cerium(III) nitrate in concentrated aqueous solutions at different temperatures. J. Phys. C, Solid State Phys. 8, 2763–2774 (1996)

    CAS  Google Scholar 

  22. Van Bib, B.: International Critical Tables, vol. 3. McGraw-Hill, New York (1928), p. 27

    Google Scholar 

  23. Levitte, B.P.: Findlay’s Practical Physical Chemistry, 9th edn. Longman, New York (1973)

    Google Scholar 

  24. Weast, R.C., Astle, M.J.: In: CRC Handbook of Chemistry and Physics, 60th edn. CRC Press, Boca Raton (1980)

    Google Scholar 

  25. Woermann, D., Sarholz, W.: Die Viskosität kritischer Mischungen Experimentelle Untersuchungen am System Isobuttersäure-Wasser. Ber. Bunsenges. Z. Phys. Chem. 69, 319–326 (1965)

    CAS  Google Scholar 

  26. Beysens, D., Bourgou, A., Paladin, G.: Experimental determinations of universal amplitude combination for binary fluids. II. Dynamics. Phys. Rev. A 30, 2686–2703 (1984)

    Article  CAS  Google Scholar 

  27. Fort, R.J., Moore, W.R.: Viscosities of binary liquid mixtures. Trans. Faraday Soc. 62, 1112–1119 (1966)

    Article  CAS  Google Scholar 

  28. Colter, A.K., Grunwald, E.: Application of differential refractometry to the measurement of association constants for molecular complex formation. J. Phys. Chem. 74, 3637–3642 (1970)

    Article  CAS  Google Scholar 

  29. Erdey Gruz, T.: Transport Phenomena in Aqueous Solutions. Hilger, London (1958)

    Google Scholar 

  30. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th edn. Dover, New York (1972)

    Google Scholar 

  31. Tomiska, J.: Calculation of the thermodynamics of ternary systems based upon experimental data of e.m.f. measurements. CALPHAD 5, 81–92 (1981)

    Article  CAS  Google Scholar 

  32. Tomiska, J.: Zur Konversion der Anpassungen thermodynamischer Funktionen mittels einer Reihe Legendre’scher Polynome und der Potenzreihe. CALPHAD 5, 93–102 (1981)

    Article  Google Scholar 

  33. Tomiska, J.: Mathematical conversions of the thermodynamic excess functions represented by the Redlich–Kister expansion and by the Chebyshev polynomial series to power series representations and vice-versa. CALPHAD 8, 283–294 (1984)

    Article  CAS  Google Scholar 

  34. Peralta, R.D., Infante, R., Cortez, G., Ramírez, R.R., Wisniak, J.: Densities and excess volumes of binary mixtures of 1,4-dioxane with either ethyl acrylate, or butyl acrylate, or methyl acrylate, or styrene at T=298.15 K. J. Chem. Thermodyn. 35, 239–250 (2003)

    Article  CAS  Google Scholar 

  35. Peralta, R.D., Infante, R., Cortez, G., Elizalde, L.E., Wisniak, J.: Density, excess volumes and partial volumes of the systems of p-xylene + ethyl acrylate, butyl acrylate, methyl methacrylate, and styrene at 298.15 K. Thermochim. Acta 421, 59–68 (2004)

    Article  CAS  Google Scholar 

  36. Wisniak, J., Peralta, R.D., Infante, R., Cortez, G., Lopez, R.G.: Densities, isobaric thermal compressibilities and derived thermodynamic properties of the binary systems of cyclohexane with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at T=(298.15 and 308.15) K. Thermochim. Acta 437, 1–6 (2005)

    Article  CAS  Google Scholar 

  37. Wisniak, J., Villarreal, I., Peralta, R.D., Infante, R., Cortez, G., Soto, H.: Densities and volumes of mixing of the ternary system toluene + butyl acrylate + methyl methacrylate and its binaries at 298.15 K. J. Chem. Thermodyn. 39, 88–95 (2007)

    Article  CAS  Google Scholar 

  38. Arfken, G.: Mathematical Methods for Physicists, 3rd edn. Academic Press, Orlando (1985)

    Google Scholar 

  39. Dattoli, G., Srivastava, H., Zhukovsky, K.: Orthogonality properties of the Hermite and related polynomials. J. Comput. Appl. Math. 182(1), 165–172 (2005)

    Article  Google Scholar 

  40. Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929)

    Article  CAS  Google Scholar 

  41. Nakagawa, T.: Is viscosity B coefficient characteristic for solute-solvent interaction? J. Mol. Liq. 63, 303–316 (1995)

    Article  CAS  Google Scholar 

  42. Ruiz Holgado, M.E., de Schaefer, C.R., de Araneibia, E.L.: Viscosity study of 1-propanol with polyethylene glycol 350 monomethyl ether systems at different temperatures. J. Mol. Liq. 79, 257–267 (1999)

    Article  Google Scholar 

  43. Longuet-Higgins, H.C.: The statistical thermodynamics of multicomponent systems. Proc. R. Soc. (Lond.) 205A, 247–269 (1951)

    Article  Google Scholar 

  44. Matsubayashi, N., Nakahara, M.: Dynamics in regular solution: concentration and viscosity dependence of orientational correlation of a benzene molecule. J. Chem. Phys. 94, 653–661 (1991)

    Article  CAS  Google Scholar 

  45. Van Ness, H.C., Abbott, M.M.: Classical Thermodynamics of Nonelectrolyte Solutions. McGraw-Hill, New York (1982)

    Google Scholar 

  46. Grunberg, L., Nissan, A.H.: Mixture law for viscosity. Nature 164, 799–800 (1949)

    Article  CAS  Google Scholar 

  47. Hind, R.H., McLaughlin, E., Ubbelohde, A.R.: Structure and viscosity of liquids-camphor and pyrene mixtures. Trans. Faraday Soc. 56, 328–334 (1960)

    Article  CAS  Google Scholar 

  48. Katti, P.K., Chaudhri, M.M.: Viscosities of binary mixtures of benzyl acetate with dioxane, aniline and m-cresol. J. Chem. Eng. Data 9, 442–443 (1964)

    Article  CAS  Google Scholar 

  49. McAllister, R.A.: The viscosities of liquid mixtures. Am. Inst. Chem. Eng. 6, 427–431 (1960)

    CAS  Google Scholar 

  50. Heric, E.L., Brewer, J.C.: Viscosity of some binary liquid nonelectrolyte mixtures. J. Chem. Eng. Data 12, 574–583 (1967)

    Article  CAS  Google Scholar 

  51. Auslander, G.: Prediction of the McAllister model parameters from pure component properties for liquid binary n-alkane systems. Br. Chem. Eng. 9, 610–618 (1964)

    Google Scholar 

  52. Toumi, A., Bouanz, M.: Volumetric and refractive index properties of isobutyric acid–water binary mixtures at temperatures ranging from 300.15 to 313.15 K. J. Mol. Liq. 139, 55–60 (2008)

    Article  CAS  Google Scholar 

  53. Falkenhagen, H.: Theorie der Elektrolyte. Hirzel, Leipzig (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ouerfelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouerfelli, N., Kouissi, T., Zrelli, N. et al. Competition of Viscosity Correlation Equations in Isobutyric Acid + Water Binary Mixtures Near and Far Away from the Critical Temperature. J Solution Chem 38, 983–1004 (2009). https://doi.org/10.1007/s10953-009-9423-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9423-2

Keywords

Navigation