Skip to main content
Log in

Abraham Model Correlations for Transfer of Neutral Molecules to Tetrahydrofuran and to 1,4-Dioxane, and for Transfer of Ions to Tetrahydrofuran

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Data have been compiled from the published literature for the partition coefficients of solutes and vapors into anhydrous tetrahydrofuran and 1,4-dioxane. The logarithms of the water-to-ether partition coefficients, log10 P, and gas-to-ether partition coefficients, log10 K, were correlated with the Abraham solvation parameter model. The derived correlations described the observed log10 P and log10 K values for both ether solvents to within average standard deviations of 0.16 log10 units or less. The log10 P correlation for tetrahydrofuran was extended to include the partition of ions by inclusion of a cation-solvent and an anion-solvent term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abraham, M.H.: Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 23, 73–83 (1993)

    Article  Google Scholar 

  2. Abraham, M.H., Le, J., Acree, W.E. Jr.: The solvation properties of the aliphatic alcohols. Collect. Czechoslov. Chem. Commun. 64, 1748–1760 (1999)

    Article  CAS  Google Scholar 

  3. Abraham, M.H., Le, J., Acree, W.E. Jr., Carr, P.W.: Solubility of gases and vapours in propan-1-ol at 298 K. J. Phys. Org. Chem. 12, 675–680 (1999)

    Article  CAS  Google Scholar 

  4. Abraham, M.H., Zissimos, A.M., Acree, W.E. Jr.: Partition of solutes into wet and dry ethers; an LFER analysis. New J. Chem. 27, 1041–1044 (2003)

    Article  CAS  Google Scholar 

  5. Abraham, M.H., Green, C.E., Acree, W.E. Jr., Hernández, C.E., Roy, L.E.: Descriptors for solutes from the solubility of solids: trans-stilbene as an example. J. Chem. Soc., Perkin Trans. 2, 2677–2681 (1998)

    Google Scholar 

  6. Abraham, M.H., Acree, W.E. Jr.: Equations for the transfer of neutral molecules and ionic species from water to organic solvents. J. Org. Chem. 75, 1006–1015 (2010)

    Article  CAS  Google Scholar 

  7. Abraham, M.H., Acree, W.E. Jr.: Solute descriptors for phenoxide anions and their use to establish correlations of rates of reactions of anions with iodomethane. J. Org. Chem. 75, 3021–3026 (2010)

    Article  CAS  Google Scholar 

  8. Abraham, M.H., Acree, W.E. Jr.: The transfer of neutral molecules, ions and ionic species from water to wet octanol. Phys. Chem. Chem. Phys. 12, 13182–13188 (2010)

    Article  CAS  Google Scholar 

  9. Abraham, M.H., Acree, W.E. Jr.: The transfer of neutral molecules, ions and ionic species from water to ethylene glycol and to propylene carbonate; descriptors for pyridinium cations. New J. Chem. 34, 2298–2305 (2010)

    Article  CAS  Google Scholar 

  10. Ye, S., Saifullah, M., Grubbs, L.M., McMillan-Wiggins, M.C., Acosta, P., Mejorado, D., Flores, I., Acree, W.E. Jr., Abraham, M.H.: Determination of the Abraham model solute descriptors for 3,5-dinitro-2-methylbenzoic acid from measured solubility data in organic solvents. Phys. Chem. Liq. 49, 821–829 (2011)

    Article  Google Scholar 

  11. Holley, K., Acree, W.E. Jr., Abraham, M.H.: Determination of the Abraham solute descriptors for 2-ethylanthraquinone based on measured solubility ratios. Phys. Chem. Liq. 49, 355–365 (2011)

    Article  CAS  Google Scholar 

  12. Hoover, K.R., Acree, W.E. Jr., Abraham, M.H.: Mathematical correlation of phenothiazine solubilities in organic solvents with the Abraham solvation parameter model. Phys. Chem. Liq. 44, 367–376 (2006)

    Article  CAS  Google Scholar 

  13. Monárrez, C.I., Stovall, D.M., Woo, J.H., Taylor, P., Acree, W.E. Jr.: Solubility of xanthene in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile order theory. Phys. Chem. Liq. 40, 703–714 (2002)

    Article  Google Scholar 

  14. Hoover, K.R., Pop, K., Acree, W.E. Jr., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 3-chlorobenzoic acid solubilities with the Abraham solvation parameter model. S. African J. Chem. 58, 25–29 (2005)

    CAS  Google Scholar 

  15. Fletcher, K.A., Coym, K.S., Roy, L.E., Hernández, C.E., McHale, M.E.R., Acree, W.E. Jr.: Solubility of thioxanthen-9-one in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile order theory. Phys. Chem. Liq. 35, 243–252 (1998)

    Article  CAS  Google Scholar 

  16. Gianni, P., Lepori, L., Matteoli, E.: Excess Gibbs energies of the ternary system 2-methoxyethanol + tetrahydrofuran + cyclohexane and other relevant binaries at 298.15 K. J. Chem. Eng. Data 55, 5441–5446 (2010)

    Article  CAS  Google Scholar 

  17. Lepori, L., Matteoli, E., Bernazzani, L., Ceccanti, N., Conti, G., Gianni, P., Mollica, V., Tine, M.R.: Isothermal vapour/liquid equilibria of binary mixtures with dibutyl ether at 298.15 K. Phys. Chem. Chem. Phys. 2, 4837–4842 (2000)

    Article  CAS  Google Scholar 

  18. Daniels, C.R. Charlton, A.K., Wold, R.M., Acree, W.E. Jr., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: solubilities of 3-methylbenzoic acid and 4-chlorobenzoic acid in organic solvents. Can. J. Chem. 81, 1492–1501 (2003)

    Article  CAS  Google Scholar 

  19. Coaxum, R., Hoover, K.R., Pustejovsky, E., Stovall, D.M., Acree, W.E. Jr., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: Part 3. Mathematical correlation of 2-methylbenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 42, 313–322 (2004)

    Article  CAS  Google Scholar 

  20. Hoover, K.R., Coaxum, R., Pustejovsky, E., Stovall, D.M., Acree, W.E. Jr., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: Part 4. Mathematical correlation of 4-nitrobenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 42, 339–347 (2004)

    Article  CAS  Google Scholar 

  21. Hoover, K.R., Coaxum, R., Pustejovsky, E., Acree, W.E. Jr., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: Part 5. Mathematical correlation of 3,5-dinitrobenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 42, 457–466 (2004)

    Article  CAS  Google Scholar 

  22. Daniels, C.R., Charlton, A.K., Wold, R.M., Pustejovsky, E., Furman, A.N., Bilbrey, A.C., Love, J.N., Garza, J.A., Acree, W.E. Jr., Abraham, M.H.: Mathematical correlation of naproxen solubilities in organic solvents with the Abraham solvation parameter model. Phys. Chem. Liq. 42, 481–491 (2004)

    Article  CAS  Google Scholar 

  23. Hoover, K.R., Stovall, D.M., Pustejovsky, E., Coaxum, R., Pop, K., Acree, W.E. Jr., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 2-methoxybenzoic acid and 4-methoxybenzoic acid solubilities with the Abraham solvation parameter model. Can. J. Chem. 82, 1353–1360 (2004)

    Article  CAS  Google Scholar 

  24. Daniels, C.R., Charlton, A.K., Wold, R.M., Moreno, R.J., Acree, W.E. Jr., Abraham, M.H.: Mathematical correlation of 4-aminobenzoic acid solubilities in organic solvents with the Abraham solvation parameter model. Phys. Chem. Liq. 42, 633–641 (2004)

    Article  CAS  Google Scholar 

  25. Charlton, A.K., Daniels, C.R., Wold, R.M., Pustejovsky, E., Acree, W.E. Jr., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 3-nitrobenzoic acids solubilities with the Abraham general solvation model. J. Mol. Liq. 116, 19–28 (2005)

    Article  CAS  Google Scholar 

  26. Stovall, D.M., Acree, W.E. Jr., Abraham, M.H.: Solubility of 9-fluorenone, thianthrene and xanthene in organic solvents. Fluid Phase Equilib. 232, 113–121 (2005)

    Article  CAS  Google Scholar 

  27. Stovall, D.M., Givens, C., Keown, S., Hoover, K.R., Barnes, R., Harris, C., Lozano, J., Nguyen, M., Rodriquez, E., Acree, W.E. Jr., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 4-chloro-3-nitrobenzoic acid and 2-chloro-5-nitrobenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 43, 351–360 (2005)

    Article  CAS  Google Scholar 

  28. Flanagan, K.B., Hoover, K.R., Garza, O., Hizon, A., Soto, T., Vellegas, N., Acree, W.E. Jr., Abraham, M.H.: Mathematical correlation of 1-chloroanthraquinone solubilities in organic solvents with the Abraham solvation parameter model. Phys. Chem. Liq. 44, 377–386 (2006)

    Article  CAS  Google Scholar 

  29. Blake-Taylor, B.H., Deleon, V.H., Acree, W.E. Jr., Abraham, M.H.: Mathematical correlation of salicylamide solubilities in organic solvents with the Abraham solvation parameter model. Phys. Chem. Liq. 45, 389–398 (2007)

    Article  CAS  Google Scholar 

  30. Thimmasetty, J., Subrahmanyam, C.V.S., Sathesh Babu, P.R., Maulik, M.A., Viswanath, B.A.: Solubility behavior of pimozide in polar and nonpolar solvents: partial solubility parameters approach. J. Solution Chem. 37, 1365–1378 (2008)

    Article  CAS  Google Scholar 

  31. Bustamante, P., Pena, M.A., Barra, J.: Partial solubility parameters of piroxicam and niflumic acid. Int. J. Pharm. 174, 141–150 (1998)

    Article  CAS  Google Scholar 

  32. Perlovich, G.L., Kurkov, S.V., Bauer-Brandl, A.: Thermodynamics of solutions II. Flurbiprofen and diflunisal as models for studying solvation of drug substances. Eur. J. Pharm. Sci. 19, 423–432 (2003)

    Article  CAS  Google Scholar 

  33. Pena, M.A., Reillo, A., Escalera, B., Bustamante, P.: Solubility parameter of drugs for predicting the solubility profile type within a wide polarity range in solvent mixtures. Int. J. Pharm. 321, 155–161 (2006)

    Article  CAS  Google Scholar 

  34. Li, Q.-S., Li, Z., Wang, S.: Solubility of trimethoprim (TMP) in different organic solvents from (278 to 333) K. J. Chem. Eng. Data 53, 286–287 (2008)

    Article  CAS  Google Scholar 

  35. Wang, S., Li, Q.-S., Lin, X.Z., Wang, H.R., Liu, L.: Solubility of 3-nitrophthalic acid in different solvents between 278 K and 353 K. J. Chem. Eng. Data 52, 876–877 (2007)

    Article  CAS  Google Scholar 

  36. Chang, Q.-L., Li, Q.-S., Wang, S., Tian, Y.-M.: Solubility of phenacetinum in methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, tetrahydrofuran, ethyl acetate, and benzene between 282.65 K and 333.70 K. J. Chem. Eng. Data 52, 1894–1896 (2007)

    Article  CAS  Google Scholar 

  37. Huyskens, F., Morissen, H., Huyskens, P.: Solubilities of p-nitroanilines in various classes of solvents. Specific solute-solvent interactions. J. Mol. Struct. 441, 17–25 (1998)

    Article  CAS  Google Scholar 

  38. Matsuda, H., Kaburagi, K., Matsumoto, S., Kurihara, K., Tochigi, K., Tomono, K.: Solubilities of salicylic acid in pure solvents and binary mixtures containing cosolvent. J. Chem. Eng. Data 54, 480–484 (2009)

    CAS  Google Scholar 

  39. Barra, J., Pena, M.-A., Bustamante, P.: Proposition of group molar constants for sodium to calculate the partial solubility parameters of sodium salts using the van Krevelen group contribution method. Eur. J. Pharm. Sci. 10, 153–161 (2000)

    Article  CAS  Google Scholar 

  40. Das, B., Ghosh, R.: Salting effects of p-aminophenol in some protic solvents at 20 °C. J. Chem. Eng. Data 28, 45–47 (1983)

    Article  CAS  Google Scholar 

  41. Bustamante, P., Romero, S., Pena, A., Escalera, B., Reillo, A.: Enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide, and nalidixic acid in dioxane–water. J. Pharm. Sci. 87, 1590–1596 (1998)

    Article  CAS  Google Scholar 

  42. Charlton, A.K., Daniels, C.R., Acree, W.E. Jr., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of acetylsalicylic acid solubilities with the Abraham general solvation model. J. Solution Chem. 32, 1087–1101 (2003)

    Article  CAS  Google Scholar 

  43. Abraham, M.H., Benjelloun-Dakhama, N., Gola, J.M.R., Acree, W.E. Jr., Cain W.S., Cometto-Muniz J.E.: Solvation descriptors for ferrocene, and the estimation of some physicochemical and biochemical properties. New J. Chem. 24, 825–829 (2010)

    Article  Google Scholar 

  44. Barbosa, J., Barrón, D., Bosch, E., Rosés, M.: Resolution of acid strength in tetrahydrofuran of substituted benzoic acids. Anal. Chim. Acta 265, 157–165 (1992)

    Article  CAS  Google Scholar 

  45. Barrón, D., Buti, S., Ruiz, M., Barbosa, J.: Preferential solvation in the THF–water mixtures. Dissociation of acid components of pH reference materials. Phys. Chem. Chem. Phys. 1, 295–298 (1999)

    Article  Google Scholar 

  46. Garrido, G., Koort, E., Ràfols, C., Bosch, E., Rodima, T., Leito, I., Rosés, M.: Acid-base equilibria in nonpolar media. Absolute pKa scale of bases in tetrahydrofuran. J. Org. Chem. 71, 9062–9067 (2006)

    Article  CAS  Google Scholar 

  47. Rõõm, E.-I., Kütt, A., Kaljurand, I., Koppel, I., Leito, I., Koppel, I.A., Mishima, M., Goto, K., Miyahara, Y.: Brønsted basicities of diamines in the gas phase, acetonitrile and tetrahydrofuran. Chem. Eur. J. 13, 7631–7643 (2007)

    Article  Google Scholar 

  48. Gritzner, G.: Single-ion transfer properties of cations from water derived from electrochemical measurements. J. Chem. Eng. Data 55, 1914–1920 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Acree Jr..

Electronic Supplementary Material

Below is the link to the electronic supplementary material. (PDF 366 kB)

10953_2011_9776_MOESM1_ESM.doc

Table S1. Experimental log10 P and log10 K Data for Solutes Dissolved in Anhydrous Tetrahydrofuran at 298 K; Table S2. Experimental log10 P and log10 K Data for Solutes Dissolved in Anhydrous Tetrahydrofuran at 298 K.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saifullah, M., Ye, S., Grubbs, L.M. et al. Abraham Model Correlations for Transfer of Neutral Molecules to Tetrahydrofuran and to 1,4-Dioxane, and for Transfer of Ions to Tetrahydrofuran. J Solution Chem 40, 2082–2094 (2011). https://doi.org/10.1007/s10953-011-9776-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-011-9776-1

Keywords

Navigation